{"title":"A human-inspired framework for bipedal robotic walking design","authors":"Ryan W. Sinnet, Shu Jiang, A. Ames","doi":"10.1504/IJBBR.2014.059275","DOIUrl":null,"url":null,"abstract":"This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as ‘human-like’ as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2014.059275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This work seeks virtual constraints, or outputs, that are intrinsic to human walking and utilises these outputs to construct controllers which produce human-like bipedal robotic walking. Beginning with experimental human walking data, human outputs are sought, i.e., functions of the kinematics of the human over time, which provides a low-dimensional representation of human walking. It will be shown that, for these outputs, humans act like linear mass-spring-dampers; this yields a time representation of the human outputs through canonical walking functions. Combining these formulations leads to human-inspired controllers that, when utilised in an optimisation problem, provably result in robotic walking that is as ‘human-like’ as possible. This human-inspired approach is applied to multiple human output combinations, from which it is determined which output combination results in the most human-like walking for a robotic model with mean human parameters.