Log-likelihood method to select initial values of multichannel non-negative matrix factorization

Fuminori Yoshiyama, Shingo Uenohara, Keisuke Nishijima, Yusuke Hioka, K. Furuya
{"title":"Log-likelihood method to select initial values of multichannel non-negative matrix factorization","authors":"Fuminori Yoshiyama, Shingo Uenohara, Keisuke Nishijima, Yusuke Hioka, K. Furuya","doi":"10.1109/ICCE-TW.2015.7216813","DOIUrl":null,"url":null,"abstract":"A multichannel extension of non-negative matrix factorization (NMF) associates the spatial property of the sources with each of the NMF bases. An initial-value selection method based on log-likelihood for multichannel non-negative matrix factorization (MNMF) is introduced to reduce the variation of the source separation performance. Experimental results showed selecting initial values that provide high log-likelihood would improve the source separation performance of MNMF depending on the sources.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A multichannel extension of non-negative matrix factorization (NMF) associates the spatial property of the sources with each of the NMF bases. An initial-value selection method based on log-likelihood for multichannel non-negative matrix factorization (MNMF) is introduced to reduce the variation of the source separation performance. Experimental results showed selecting initial values that provide high log-likelihood would improve the source separation performance of MNMF depending on the sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对数似然法选择多通道非负矩阵分解的初始值
非负矩阵分解(NMF)的多通道扩展将源的空间特性与每个NMF基相关联。提出了一种基于对数似然的多通道非负矩阵分解(MNMF)初始值选择方法,以减小源分离性能的变化。实验结果表明,选择具有高对数似然的初始值可以提高MNMF的源分离性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fuzzy-rough set based ontology for hybrid recommendation Monitoring system of patient position based on wireless body area sensor network Automation control algorithms in gas mixture for preterm infant oxygen therapy Interframe hole filling for DIBR in 3D videos Automatic recognition of audio event using dynamic local binary patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1