Blind source separation based on the array-averaged Fractional Fourier Transform

Lu-ping Zhou, Bingrong Li, Chun-feng Wang
{"title":"Blind source separation based on the array-averaged Fractional Fourier Transform","authors":"Lu-ping Zhou, Bingrong Li, Chun-feng Wang","doi":"10.1109/CCDC.2009.5194850","DOIUrl":null,"url":null,"abstract":"In this paper, a novel blind source separation method based on the array-averaged Fractional Fourier Transform is proposed. This method can decrease the noise levels, and suppress the interactions of the source signals, which lead to better separation performance. Compared with the previous blind source separation techniques based on the time-frequency distributions, this proposed method produces little crossterms, and it does not require whitening, joint-diagonalization, and bilinear signal synthesis. The improved efficiency of the method is verified by the simulation.","PeriodicalId":127110,"journal":{"name":"2009 Chinese Control and Decision Conference","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Control and Decision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2009.5194850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel blind source separation method based on the array-averaged Fractional Fourier Transform is proposed. This method can decrease the noise levels, and suppress the interactions of the source signals, which lead to better separation performance. Compared with the previous blind source separation techniques based on the time-frequency distributions, this proposed method produces little crossterms, and it does not require whitening, joint-diagonalization, and bilinear signal synthesis. The improved efficiency of the method is verified by the simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阵列平均分数阶傅里叶变换的盲源分离
提出了一种基于阵列平均分数阶傅里叶变换的盲源分离方法。该方法可以降低噪声水平,抑制源信号的相互作用,从而获得更好的分离性能。与以往基于时频分布的盲源分离技术相比,该方法产生的交叉项较小,且不需要白化、联合对角化和双线性信号合成。通过仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Observer-based H∞ control for discrete-time T-S fuzzy systems Soft sensor for distillation column feeds Design of temperature measure system for variable sensitive temperature range Wavelet neural network based fault diagnosis of asynchronous motor Analysis of the divert ability of atmospheric interceptors controlled by lateral jet thrusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1