Evolutionary and Case-Based Approaches to REG: NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR and NIL-UCM-EvoCBR

Raquel Hervás, Pablo Gervás
{"title":"Evolutionary and Case-Based Approaches to REG: NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR and NIL-UCM-EvoCBR","authors":"Raquel Hervás, Pablo Gervás","doi":"10.3115/1610195.1610227","DOIUrl":null,"url":null,"abstract":"We propose the use of evolutionary algorithms (EAs) (Holland, 1992) to deal with the attribute selection task of referring expression generation. Evolutionary algorithms operate over a population of individuals (possible solutions for a problem) that evolve according to selection rules and genetic operators. The fitness function is a metric that evaluates each of the possible solutions, ensuring that the average adaptation of the population increases each generation. Repeating this process hundreds or thousands of times leads to very good solutions for the problem.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose the use of evolutionary algorithms (EAs) (Holland, 1992) to deal with the attribute selection task of referring expression generation. Evolutionary algorithms operate over a population of individuals (possible solutions for a problem) that evolve according to selection rules and genetic operators. The fitness function is a metric that evaluates each of the possible solutions, ensuring that the average adaptation of the population increases each generation. Repeating this process hundreds or thousands of times leads to very good solutions for the problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于演化和案例的REG方法:NIL-UCM-EvoTAP, NIL-UCM-ValuesCBR和NIL-UCM-EvoCBR
我们建议使用进化算法(EAs) (Holland, 1992)来处理引用表达式生成的属性选择任务。进化算法对根据选择规则和遗传算子进化的个体群体(问题的可能解决方案)进行操作。适应度函数是评估每个可能解决方案的度量,确保种群的平均适应能力每一代都在增加。重复这个过程数百次或数千次,就会产生非常好的问题解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1