{"title":"An adaptive force reflective teleoperation control method using online environment impedance estimation","authors":"Faezeh Heydari Khabbaz, A. Goldenberg, J. Drake","doi":"10.1109/RIISS.2014.7009167","DOIUrl":null,"url":null,"abstract":"This paper proposes a new adaptive method for two-channel bilateral teleoperation systems control; the control method consists of adaptive force feedback and motion command scaling factors that ensure stable teleoperation with maximum achievable transparency at every moment of operation. The method is based on the integration of the real time estimation of the robot's environment impedance with the adaptive force and motion scaling factors generator. This paper formulates the adaptive scaling factors for stable teleoperation based on the impedance models of master, slave and estimated impedance of the environment. Feasibility and accuracy of an online environment impedance estimation method are analyzed through simulations and experiments. Then the proposed adaptive bilateral control method is verified through simulation studies. Results show stable interactions with maximum transparency for the simulated teleoperation system.","PeriodicalId":270157,"journal":{"name":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Robotic Intelligence in Informationally Structured Space (RiiSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIISS.2014.7009167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper proposes a new adaptive method for two-channel bilateral teleoperation systems control; the control method consists of adaptive force feedback and motion command scaling factors that ensure stable teleoperation with maximum achievable transparency at every moment of operation. The method is based on the integration of the real time estimation of the robot's environment impedance with the adaptive force and motion scaling factors generator. This paper formulates the adaptive scaling factors for stable teleoperation based on the impedance models of master, slave and estimated impedance of the environment. Feasibility and accuracy of an online environment impedance estimation method are analyzed through simulations and experiments. Then the proposed adaptive bilateral control method is verified through simulation studies. Results show stable interactions with maximum transparency for the simulated teleoperation system.