Sergey Klyapovskiy, S. You, H. Bindner, Hanmin Cai
{"title":"Optimal Placement of a Heat Pump in an Integrated Power and Heat Energy System","authors":"Sergey Klyapovskiy, S. You, H. Bindner, Hanmin Cai","doi":"10.1109/GREENTECH.2017.42","DOIUrl":null,"url":null,"abstract":"With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found with the help of mathematical optimization that minimizes investments of both electric and heating utilities, achieving the reduction of the total investment. The optimization is performed in Matlab using built-in Genetic Algorithm function and Matpower software package for calculating power flow equations.","PeriodicalId":104496,"journal":{"name":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","volume":"527 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Ninth Annual IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
With the present trend towards Smart Grids and Smart Energy Systems it is important to look for the opportunities for integrated development between different energy sectors, such as electricity, heating, gas and transportation. This paper investigates the problem of optimal placement of a heat pump – a component that links electric and heating utilities together. The system used to demonstrate the integrated planning approach has two neighboring 10kV feeders and several distribution substations with loads that require central heating from the heat pump. The optimal location is found with the help of mathematical optimization that minimizes investments of both electric and heating utilities, achieving the reduction of the total investment. The optimization is performed in Matlab using built-in Genetic Algorithm function and Matpower software package for calculating power flow equations.