Modeling Machine Learning and Data Mining Problems with FO(·)

H. Blockeel, B. Bogaerts, M. Bruynooghe, B. D. Cat, Stef De Pooter, M. Denecker, A. Labarre, J. Ramon, S. Verwer
{"title":"Modeling Machine Learning and Data Mining Problems with FO(·)","authors":"H. Blockeel, B. Bogaerts, M. Bruynooghe, B. D. Cat, Stef De Pooter, M. Denecker, A. Labarre, J. Ramon, S. Verwer","doi":"10.4230/LIPIcs.ICLP.2012.14","DOIUrl":null,"url":null,"abstract":"This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.","PeriodicalId":271041,"journal":{"name":"International Conference on Logic Programming","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Logic Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICLP.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper reports on the use of the FO(·) language and the IDP framework for modeling and solving some machine learning and data mining tasks. The core component of a model in the IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the latter are basically logic programs where clause bodies can have arbitrary first order formulas. Hence, it is a small step for a well-versed computer scientist to start modeling. We describe some models resulting from the collaboration between IDP experts and domain experts solving machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain of philology concerned with the relationship between surviving variant versions of text. A second task is about a somewhat similar problem within biology where phylogenetic trees are used to represent the evolution of species. A third and final task is about learning a minimal automaton consistent with a given set of strings. For each task, we introduce the problem, present the IDP code and report on some experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用FO建模机器学习和数据挖掘问题(·)
本文报道了使用FO(·)语言和IDP框架来建模和解决一些机器学习和数据挖掘任务。IDP框架中模型的核心组成部分是由一阶逻辑公式和定义组成的FO(·)理论;后者基本上是逻辑程序,其中子句主体可以具有任意一阶公式。因此,对于精通计算机的科学家来说,开始建模是一小步。我们描述了一些由IDP专家和领域专家解决机器学习和数据挖掘任务的合作产生的模型。第一个任务是在系统学领域,这是一个关注现存文本变体版本之间关系的语言学领域。第二个任务是关于生物学中的一个有点类似的问题,系统发育树被用来表示物种的进化。第三个也是最后一个任务是学习与给定字符串集一致的最小自动机。对于每个任务,我们都介绍了问题,给出了IDP代码并报告了一些实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Actual Causation via Reasoning About Actions and Change Speeding up Lazy-Grounding Answer Set Solving Improving Candidate Quality of Probabilistic Logic Models Epistemic Logic Programs with World View Constraints Learning Commonsense Knowledge Through Interactive Dialogue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1