Human Thermal Face Recognition Based on Random Linear Oracle (RLO) Ensembles

T. Gaber, A. Tharwat, Abdelhameed Ibrahim, V. Snás̃el, A. Hassanien
{"title":"Human Thermal Face Recognition Based on Random Linear Oracle (RLO) Ensembles","authors":"T. Gaber, A. Tharwat, Abdelhameed Ibrahim, V. Snás̃el, A. Hassanien","doi":"10.1109/INCoS.2015.67","DOIUrl":null,"url":null,"abstract":"This paper proposes a human thermal face recognitionapproach with two variants based on Random linearOracle (RLO) ensembles. For the two approaches, the Segmentation-based Fractal Texture Analysis (SFTA) algorithmwas used for extracting features and the RLO ensembleclassifier was used for recognizing the face from its thermalimage. For the dimensionality reduction, one variant (SFTALDA-RLO) was used the technique of Linear DiscriminantAnalysis (LDA) while the other variant (SFTA-PCA-RLO) wasused the Principal Component Analysis (PCA). The classifier'smodel was built using the RLO classifier during the trainingphase and in the testing phase then this model was usedto identify the unknown sample images. The two variantswere evaluated using the Terravic Facial IR Database and theexperimental results showed that the two variants achieved agood recognition rate at 94.12% which is better than related work.","PeriodicalId":345650,"journal":{"name":"2015 International Conference on Intelligent Networking and Collaborative Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper proposes a human thermal face recognitionapproach with two variants based on Random linearOracle (RLO) ensembles. For the two approaches, the Segmentation-based Fractal Texture Analysis (SFTA) algorithmwas used for extracting features and the RLO ensembleclassifier was used for recognizing the face from its thermalimage. For the dimensionality reduction, one variant (SFTALDA-RLO) was used the technique of Linear DiscriminantAnalysis (LDA) while the other variant (SFTA-PCA-RLO) wasused the Principal Component Analysis (PCA). The classifier'smodel was built using the RLO classifier during the trainingphase and in the testing phase then this model was usedto identify the unknown sample images. The two variantswere evaluated using the Terravic Facial IR Database and theexperimental results showed that the two variants achieved agood recognition rate at 94.12% which is better than related work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机线性预测集(RLO)的人体热人脸识别
提出了一种基于随机线性集合(RLO)的人体热人脸识别方法。两种方法分别采用基于分割的分形纹理分析(SFTA)算法提取特征,采用RLO集成分类器从热图像中识别人脸。对于降维,一个变体(SFTALDA-RLO)使用线性判别分析(LDA)技术,另一个变体(SFTA-PCA-RLO)使用主成分分析(PCA)技术。在训练阶段使用RLO分类器建立分类器模型,在测试阶段使用该模型对未知样本图像进行识别。利用Terravic人脸红外数据库对两种变体进行了评估,实验结果表明,两种变体的识别率达到了94.12%,优于相关工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Investigation of a Semi-Automatic Criminology Intelligence Extraction Method: A Big Data Approach Energy-Efficient Link and Node Power Control for Avoidance of Congestion in Accordance with Traffic Load Fluctuations Differential Evolution Enhanced by the Closeness Centrality: Initial Study Towards a Kansei WordNet by Color Design SNS Evaluation Minimum Background Fairness for Quality Video Delivery over the LTE Downlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1