Standardization of Menstrual Cycle Data for the Analysis of Intensive Longitudinal Data

K. Joyce, S. Stewart
{"title":"Standardization of Menstrual Cycle Data for the Analysis of Intensive Longitudinal Data","authors":"K. Joyce, S. Stewart","doi":"10.5772/INTECHOPEN.81504","DOIUrl":null,"url":null,"abstract":"Daily diary methodology is becoming popular in human menstrual cycle (MC) research. However, variations in MC length makes it difficult to examine fluctuations in dependent variables (e.g., substance use levels), across the MC. Existing analytic approaches collapse data across MC phases, examining phase-related changes; however, a loss of potentially vital information can result when data is collapsed across phase. Additionally, current phase designation methods (phase designation and days within each phase) vary substantially across studies, making it difficult to interpret/compare results across studies. To address these problems, two methods were developed to standardize intensive longitudinal data collected via daily diary methodologies—phasic and continuous standardization. Phasic standardization accounts for individual variability in MC length by allowing luteal phase length differences while remaining phases are fixed, enabling the analysis of phasic variations. Alternatively, continuous standardization accounts for individual variability in MC length by standardizing the luteal phase to a seven-day phase, while remaining phases are fixed, allowing for the exploration of continuously reported variables across MC day. This chapter will discuss how to standardize daily diary data collected across the MC using phasic and continuous standardization methods and demonstrate the two standardization methods using two clinically-relevant hypothetical examples.","PeriodicalId":413649,"journal":{"name":"Menstrual Cycle","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menstrual Cycle","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Daily diary methodology is becoming popular in human menstrual cycle (MC) research. However, variations in MC length makes it difficult to examine fluctuations in dependent variables (e.g., substance use levels), across the MC. Existing analytic approaches collapse data across MC phases, examining phase-related changes; however, a loss of potentially vital information can result when data is collapsed across phase. Additionally, current phase designation methods (phase designation and days within each phase) vary substantially across studies, making it difficult to interpret/compare results across studies. To address these problems, two methods were developed to standardize intensive longitudinal data collected via daily diary methodologies—phasic and continuous standardization. Phasic standardization accounts for individual variability in MC length by allowing luteal phase length differences while remaining phases are fixed, enabling the analysis of phasic variations. Alternatively, continuous standardization accounts for individual variability in MC length by standardizing the luteal phase to a seven-day phase, while remaining phases are fixed, allowing for the exploration of continuously reported variables across MC day. This chapter will discuss how to standardize daily diary data collected across the MC using phasic and continuous standardization methods and demonstrate the two standardization methods using two clinically-relevant hypothetical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经期数据标准化用于密集纵向数据分析
日记法在人类月经周期研究中越来越受欢迎。然而,药品管理周期长度的变化使得难以检查整个药品管理周期内因变量(例如,药物使用水平)的波动。现有的分析方法对药品管理周期各阶段的数据进行分解,检查与阶段相关的变化;然而,当数据跨阶段崩溃时,可能会导致潜在重要信息的丢失。此外,目前的阶段指定方法(阶段指定和每个阶段的天数)在不同的研究中差异很大,这使得很难解释/比较不同研究的结果。为了解决这些问题,研究人员开发了两种方法来标准化通过日常日记方法收集的密集纵向数据——阶段标准化和连续标准化。相位标准化解释了MC长度的个体差异,允许黄体相位长度差异,而其他相位是固定的,从而能够分析相位变化。另外,通过将黄体期标准化为7天期,连续标准化说明了MC长度的个体差异,而其他阶段是固定的,允许探索MC天内连续报告的变量。本章将讨论如何使用阶段性和连续标准化方法对MC收集的日常日记数据进行标准化,并通过两个临床相关的假设示例演示这两种标准化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introductory Chapter: Regulation of Ovarian-Menstrual Cycle as a Systemic Problem of Physiology of Humans Secretory Phase and Implantation Pre Menstrual Syndrome Normal Menstrual Cycle Menstrual Cycle and Physical Effort
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1