Tuning MPC for desired closed-loop performance for SISO systems

Gaurang Shah, S. Engell
{"title":"Tuning MPC for desired closed-loop performance for SISO systems","authors":"Gaurang Shah, S. Engell","doi":"10.1109/MED.2010.5547799","DOIUrl":null,"url":null,"abstract":"Model Predictive Control (MPC) is widely used in the process industries. A successful implementation of MPC involves the setting of a considerable number of parameters which must be appropriately tuned. Despite a number of publications on MPC tuning, there is a lack of a systematic approach that relates MPC tuning to linear control theory. In this paper, a systematic tuning of the prediction horizon, the control horizon and the penalty weights is discussed such that desired closed-loop pole and zero locations result as long as the constraints are not active. We verify our approach on two challenging examples.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Model Predictive Control (MPC) is widely used in the process industries. A successful implementation of MPC involves the setting of a considerable number of parameters which must be appropriately tuned. Despite a number of publications on MPC tuning, there is a lack of a systematic approach that relates MPC tuning to linear control theory. In this paper, a systematic tuning of the prediction horizon, the control horizon and the penalty weights is discussed such that desired closed-loop pole and zero locations result as long as the constraints are not active. We verify our approach on two challenging examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调优MPC以获得理想的SISO系统闭环性能
模型预测控制(MPC)在过程工业中有着广泛的应用。MPC的成功实施涉及大量参数的设置,这些参数必须适当调整。尽管有许多关于MPC调谐的出版物,但缺乏将MPC调谐与线性控制理论联系起来的系统方法。本文讨论了预测水平、控制水平和惩罚权值的系统整定,使得只要约束不活跃,就能得到期望的闭环极点和零点位置。我们用两个具有挑战性的例子验证了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy crash avoidance and coordination between multi mobile robots A co-design approach for bilateral teleoperation over hybrid network Self-Scheduled Fuzzy Control of PWM DC-DC Converters An inverse optimality method to solve a class of second order optimal control problems Support Vector Regression for soft sensor design of nonlinear processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1