A dynamic cluster job scheduling optimisation algorithm based on data irreversibility in sensor cloud

Zeyu Sun, Jun Liu, X. Xing, Chuanfeng Li, Xiaoyan Pan
{"title":"A dynamic cluster job scheduling optimisation algorithm based on data irreversibility in sensor cloud","authors":"Zeyu Sun, Jun Liu, X. Xing, Chuanfeng Li, Xiaoyan Pan","doi":"10.1504/ijes.2019.102427","DOIUrl":null,"url":null,"abstract":"The optimisation algorithm based on irreversible data for the job scheduling of dynamic cluster is crucial to the improvement of the cluster rendering throughput and the cluster rendering efficiency. However, the dispatching imbalance of the cluster rendering task on the massive number of cluster rendering nodes will prolong the waiting time for the completion of job. Therefore, we propose dynamic cluster job scheduling optimisation algorithm based on data irreversibility (DCJS_DI). Firstly, we analyse the job scheduling target. Then, we exploit the frame independence with the clustering rendering and further establish the job scheduling model for the irreversible data dynamic cluster. Next, we elaborate on the job scheduling process of the irreversible data dynamic cluster and the dispatching process of the cluster rendering task. Finally, we investigate via simulation results the impacts of the job hunger and the resource fragmentation issue of the traditional job scheduling strategies on the system performance, the impacts of the multi-progress and multi-threading cluster rendering on the job completion time and the resource efficiency of the irreversible data dynamic cluster. We further study the extension of the cluster computation capability and the reliability issue of the cloud service.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2019.102427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The optimisation algorithm based on irreversible data for the job scheduling of dynamic cluster is crucial to the improvement of the cluster rendering throughput and the cluster rendering efficiency. However, the dispatching imbalance of the cluster rendering task on the massive number of cluster rendering nodes will prolong the waiting time for the completion of job. Therefore, we propose dynamic cluster job scheduling optimisation algorithm based on data irreversibility (DCJS_DI). Firstly, we analyse the job scheduling target. Then, we exploit the frame independence with the clustering rendering and further establish the job scheduling model for the irreversible data dynamic cluster. Next, we elaborate on the job scheduling process of the irreversible data dynamic cluster and the dispatching process of the cluster rendering task. Finally, we investigate via simulation results the impacts of the job hunger and the resource fragmentation issue of the traditional job scheduling strategies on the system performance, the impacts of the multi-progress and multi-threading cluster rendering on the job completion time and the resource efficiency of the irreversible data dynamic cluster. We further study the extension of the cluster computation capability and the reliability issue of the cloud service.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传感器云中基于数据不可逆性的动态集群作业调度优化算法
基于不可逆数据的动态集群作业调度优化算法对于提高集群绘制吞吐量和集群绘制效率至关重要。然而,集群渲染任务在大量集群渲染节点上的调度不平衡会延长任务完成的等待时间。为此,我们提出了基于数据不可逆性的动态集群作业调度优化算法(DCJS_DI)。首先对作业调度目标进行了分析。然后,利用帧独立性和聚类渲染,进一步建立了不可逆数据动态聚类的作业调度模型。其次,详细阐述了不可逆数据动态集群的作业调度过程和集群渲染任务的调度过程。最后,通过仿真结果研究了传统作业调度策略中作业饥饿和资源碎片问题对系统性能的影响,以及不可逆数据动态集群中多进程多线程集群渲染对作业完成时间和资源效率的影响。进一步研究了集群计算能力的扩展和云服务的可靠性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NITIDS: a robust network intrusion dataset Solution to the conformable fractional differential systems with higher order Flexible heuristic-based prioritised latency-sensitive IoT application execution scheme in the 5G era Selection gate-based networks for semantic relation extraction A combination classification method based on Ripper and Adaboost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1