Evolution of Robust Developmental Neural Networks

Alan N. Hampton, C. Adami
{"title":"Evolution of Robust Developmental Neural Networks","authors":"Alan N. Hampton, C. Adami","doi":"10.7551/mitpress/1429.003.0074","DOIUrl":null,"url":null,"abstract":"We present the first evolved solutions to a computational task within the Neuronal Organism Evolution model (Norgev) of artificial neural network development. These networks display a remarkable robustness to external noise sources, and can regrow to functionality when severely damaged. In this framework, we evolved a doubling of network functionality (double-NAND circuit). The network structure of these evolved solutions does not follow the logic of human coding, and instead more resembles the decentralized dendritic connection pattern of more biological networks such as the 'C. elegans' brain.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7551/mitpress/1429.003.0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present the first evolved solutions to a computational task within the Neuronal Organism Evolution model (Norgev) of artificial neural network development. These networks display a remarkable robustness to external noise sources, and can regrow to functionality when severely damaged. In this framework, we evolved a doubling of network functionality (double-NAND circuit). The network structure of these evolved solutions does not follow the logic of human coding, and instead more resembles the decentralized dendritic connection pattern of more biological networks such as the 'C. elegans' brain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒发展性神经网络的进化
我们提出了人工神经网络发展的神经元生物进化模型(Norgev)中计算任务的第一个进化解决方案。这些网络对外部噪声源表现出显著的鲁棒性,并且在严重损坏时可以重新恢复功能。在这个框架中,我们发展了加倍的网络功能(双nand电路)。这些进化解决方案的网络结构并不遵循人类编码的逻辑,而是更类似于更多生物网络(如秀丽隐杆线虫的大脑)的分散树突连接模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reviving a failed network via microscopic interventions Instantaneous phase synchronization of two decoupled quantum limit-cycle oscillators induced by conditional photon detection Non-normality and non-monotonic dynamics in complex reaction networks Spontaneous Organizations of Diverse Network Structures in Coupled Logistic Maps with a Delayed Connection Change Dynamic stability of complex networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1