Mercury: A memory-constrained spatio-temporal real-time search on microblogs

A. Magdy, M. Mokbel, S. Elnikety, Suman Nath, Yuxiong He
{"title":"Mercury: A memory-constrained spatio-temporal real-time search on microblogs","authors":"A. Magdy, M. Mokbel, S. Elnikety, Suman Nath, Yuxiong He","doi":"10.1109/ICDE.2014.6816649","DOIUrl":null,"url":null,"abstract":"This paper presents Mercury; a system for real-time support of top-k spatio-temporal queries on microblogs, where users are able to browse recent microblogs near their locations. With high arrival rates of microblogs, Mercury ensures real-time query response within a tight memory-constrained environment. Mercury bounds its search space to include only those microblogs that have arrived within certain spatial and temporal boundaries, in which only the top-k microblogs, according to a spatio-temporal ranking function, are returned in the search results. Mercury employs: (a) a scalable dynamic in-memory index structure that is capable of digesting all incoming microblogs, (b) an efficient query processor that exploits the in-memory index through spatio-temporal pruning techniques that reduce the number of visited microblogs to return the final answer, (c) an index size tuning module that dynamically finds and adjusts the minimum index size to ensure that incoming queries will be answered accurately, and (d) a load shedding technique that trades slight decrease in query accuracy for significant storage savings. Extensive experimental results based on a real-time Twitter Firehose feed and actual locations of Bing search queries show that Mercury supports high arrival rates of up to 64K microblogs/second and average query latency of 4 msec.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

This paper presents Mercury; a system for real-time support of top-k spatio-temporal queries on microblogs, where users are able to browse recent microblogs near their locations. With high arrival rates of microblogs, Mercury ensures real-time query response within a tight memory-constrained environment. Mercury bounds its search space to include only those microblogs that have arrived within certain spatial and temporal boundaries, in which only the top-k microblogs, according to a spatio-temporal ranking function, are returned in the search results. Mercury employs: (a) a scalable dynamic in-memory index structure that is capable of digesting all incoming microblogs, (b) an efficient query processor that exploits the in-memory index through spatio-temporal pruning techniques that reduce the number of visited microblogs to return the final answer, (c) an index size tuning module that dynamically finds and adjusts the minimum index size to ensure that incoming queries will be answered accurately, and (d) a load shedding technique that trades slight decrease in query accuracy for significant storage savings. Extensive experimental results based on a real-time Twitter Firehose feed and actual locations of Bing search queries show that Mercury supports high arrival rates of up to 64K microblogs/second and average query latency of 4 msec.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水星:微博上内存受限的时空实时搜索
本文介绍了水星;一个实时支持top-k时空查询的微博系统,用户可以在其位置附近浏览最近的微博。由于微博的高到达率,Mercury可以确保在内存受限的环境中进行实时查询响应。Mercury将其搜索空间限定为只包括那些到达一定空间和时间边界的微博,其中根据时空排序函数,只返回搜索结果中排名前k位的微博。汞的使用:(a)一个可扩展的动态内存索引结构,能够消化所有传入的微博;(b)一个高效的查询处理器,通过时空修剪技术利用内存索引,减少访问的微博数量,以返回最终答案;(c)一个索引大小调整模块,动态发现和调整最小索引大小,以确保传入的查询得到准确的回答;(d)一种负载释放技术,它以略微降低查询准确性换取显著的存储节省。基于实时Twitter Firehose feed和Bing搜索查询的实际位置的大量实验结果表明,Mercury支持高达64K微博/秒的高到达率和平均4毫秒的查询延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Managing uncertainty in spatial and spatio-temporal data Locality-sensitive operators for parallel main-memory database clusters KnowLife: A knowledge graph for health and life sciences We can learn your #hashtags: Connecting tweets to explicit topics A demonstration of MNTG - A web-based road network traffic generator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1