Enhanced Back Projection Network Based Stereo Image Super-Resolution Considering Parallax Attention

Li Ma, Sumei Li
{"title":"Enhanced Back Projection Network Based Stereo Image Super-Resolution Considering Parallax Attention","authors":"Li Ma, Sumei Li","doi":"10.1109/ICIP42928.2021.9506412","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed great advances in stereo image super-resolution (SR). However, the existing methods only consider the horizontal parallax when capturing the stereo correspondence, which is insufficient because the vertical parallax inevitably exists in stereo image pairs. To address this problem, we propose an enhanced back projection stereo SR network (EBPSSRnet) to make full use of the complementary information in stereo images for more accurate SR results. Specifically, we propose a relaxed parallax attention module (rePAM) to handle different stereo images with vertical and horizontal parallax. Then, an enhanced back projection block (EBPB) is developed to extract discriminative features for capturing the stereo correspondence and consolidate the best representation for reconstruction. Extensive experiments show that the proposed method achieves state-of-the-art performance on the Flickr1024, Middlebury, KITTI2012 and KITTI2015 datasets.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent years have witnessed great advances in stereo image super-resolution (SR). However, the existing methods only consider the horizontal parallax when capturing the stereo correspondence, which is insufficient because the vertical parallax inevitably exists in stereo image pairs. To address this problem, we propose an enhanced back projection stereo SR network (EBPSSRnet) to make full use of the complementary information in stereo images for more accurate SR results. Specifically, we propose a relaxed parallax attention module (rePAM) to handle different stereo images with vertical and horizontal parallax. Then, an enhanced back projection block (EBPB) is developed to extract discriminative features for capturing the stereo correspondence and consolidate the best representation for reconstruction. Extensive experiments show that the proposed method achieves state-of-the-art performance on the Flickr1024, Middlebury, KITTI2012 and KITTI2015 datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑视差注意的基于增强背投影网络的立体图像超分辨率
近年来,立体图像超分辨率(SR)技术取得了巨大的进步。然而,现有的方法在捕获立体对应时只考虑水平视差,由于垂直视差在立体图像对中不可避免地存在,这是不够的。为了解决这一问题,我们提出了一种增强的反向投影立体SR网络(EBPSSRnet),以充分利用立体图像中的互补信息,获得更准确的SR结果。具体来说,我们提出了一个放松视差注意模块(rePAM)来处理不同的垂直视差和水平视差立体图像。然后,提出了一种增强的反向投影块(EBPB)来提取判别特征,以捕获立体对应,并巩固最佳表示进行重建。大量实验表明,该方法在Flickr1024、Middlebury、KITTI2012和KITTI2015数据集上达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1