TauMed: test augmentation of deep learning in medical diagnosis

Yunhan Hou, Jiawei Liu, Daiwei Wang, Jiawei He, Chunrong Fang, Zhenyu Chen
{"title":"TauMed: test augmentation of deep learning in medical diagnosis","authors":"Yunhan Hou, Jiawei Liu, Daiwei Wang, Jiawei He, Chunrong Fang, Zhenyu Chen","doi":"10.1145/3460319.3469080","DOIUrl":null,"url":null,"abstract":"Deep learning has made great progress in medical diagnosis. However, due to data standardization and privacy restriction, the acquisition and sharing of medical image data have been hindered, leading to the unacceptable accuracy of some intelligent medical diagnosis models. Another concern is data quality. If insufficient quantity and low-quality data are used for training and testing medical diagnosis models, it may cause serious medical accidents. We always use data augmentation to deal with it, and one of the most representative ways is through mutation relation. However, although common mutation methods can increase the amount of medical data, the quality of the image cannot be guaranteed due to the particularity of medical image. Therefore, combined with the characteristics of medical images, we propose TauMed, which implements augmentation techniques based on a series of mutation rules and domain semantics on medical datasets to generate sufficient and high-quality images. Moreover, we chose the ResNet-50 model to experiment with the augmented dataset and compared the results with two main popular mutation tools. The experimental result indicates that TauMed can improve the classification accuracy of the model effectively, and the quality of augmented images is higher than the other two tools. Its video is at https://www.youtube.com/watch?v=O8W8I7U_eqk and TauMed can be used at http://121.196.124.158:9500/.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3469080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Deep learning has made great progress in medical diagnosis. However, due to data standardization and privacy restriction, the acquisition and sharing of medical image data have been hindered, leading to the unacceptable accuracy of some intelligent medical diagnosis models. Another concern is data quality. If insufficient quantity and low-quality data are used for training and testing medical diagnosis models, it may cause serious medical accidents. We always use data augmentation to deal with it, and one of the most representative ways is through mutation relation. However, although common mutation methods can increase the amount of medical data, the quality of the image cannot be guaranteed due to the particularity of medical image. Therefore, combined with the characteristics of medical images, we propose TauMed, which implements augmentation techniques based on a series of mutation rules and domain semantics on medical datasets to generate sufficient and high-quality images. Moreover, we chose the ResNet-50 model to experiment with the augmented dataset and compared the results with two main popular mutation tools. The experimental result indicates that TauMed can improve the classification accuracy of the model effectively, and the quality of augmented images is higher than the other two tools. Its video is at https://www.youtube.com/watch?v=O8W8I7U_eqk and TauMed can be used at http://121.196.124.158:9500/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TauMed:深度学习在医学诊断中的测试增强
深度学习在医学诊断方面取得了很大进展。然而,由于数据标准化和隐私性的限制,阻碍了医学图像数据的采集和共享,导致一些智能医疗诊断模型的准确率难以接受。另一个问题是数据质量。如果使用数量不足、质量不高的数据进行医学诊断模型的训练和测试,可能会造成严重的医疗事故。我们通常采用数据增强的方法来处理,其中最具代表性的一种方法是通过突变关系。然而,常用的突变方法虽然可以增加医学数据量,但由于医学图像的特殊性,无法保证图像的质量。因此,我们结合医学图像的特点,提出了基于一系列突变规则和领域语义的医学数据集增强技术TauMed,以生成足够的高质量图像。此外,我们选择了ResNet-50模型对增强数据集进行实验,并将结果与两种主要流行的突变工具进行了比较。实验结果表明,TauMed可以有效地提高模型的分类精度,增强图像的质量高于其他两种工具。它的视频在https://www.youtube.com/watch?v=O8W8I7U_eqk上,TauMed可以在http://121.196.124.158:9500/上使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantic table structure identification in spreadsheets Parema: an unpacking framework for demystifying VM-based Android packers TERA: optimizing stochastic regression tests in machine learning projects Empirically evaluating readily available information for regression test optimization in continuous integration RESTest: automated black-box testing of RESTful web APIs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1