ANN based binary backtracking search algorithm for virtual power plant scheduling and cost-effective evaluation

M. A. Hannan, R. Mohamed, Maher G. M. Abdolrasol, A. Al-Shetwi, P. Ker, R. A. Begum, K. Muttaqi
{"title":"ANN based binary backtracking search algorithm for virtual power plant scheduling and cost-effective evaluation","authors":"M. A. Hannan, R. Mohamed, Maher G. M. Abdolrasol, A. Al-Shetwi, P. Ker, R. A. Begum, K. Muttaqi","doi":"10.1109/TPEC51183.2021.9384923","DOIUrl":null,"url":null,"abstract":"This paper reports of an artificial neural network (ANN) based binary backtracking search algorithm (BBSA) for optimal scheduling controller applied in IEEE 14-bus system for controlling microgrids (MGs) formed virtual power plant (VPP) The model was simulated and validated on actual parameters and load data. The algorithm deals with best binary fitness function to find the best cell and creates the optimum scheduling using the actual data for wind speed, solar radiation, fuel conditions, battery charging/discharging, and specific hour demand. The goal is to regulate the power-sharing via prioritizing the utilization of renewable sources in lieu of the national grid purchases. The developed ANN-based BBSA controller predicts the optimal schedules of the sources via ON and OFF status. The 25 DGs showed the enhancement of ANN-BBSA gives a mean absolute error (MAE) of 6.2e−3 with a correlation coefficient of 0.99993, which is closed to 1. The results showed a significant reduction in the cost and emission by 41.88% and 40.7%, respectively. The developed algorithms reduced the energy cost while delivered reliable power towards grid decarbonization.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper reports of an artificial neural network (ANN) based binary backtracking search algorithm (BBSA) for optimal scheduling controller applied in IEEE 14-bus system for controlling microgrids (MGs) formed virtual power plant (VPP) The model was simulated and validated on actual parameters and load data. The algorithm deals with best binary fitness function to find the best cell and creates the optimum scheduling using the actual data for wind speed, solar radiation, fuel conditions, battery charging/discharging, and specific hour demand. The goal is to regulate the power-sharing via prioritizing the utilization of renewable sources in lieu of the national grid purchases. The developed ANN-based BBSA controller predicts the optimal schedules of the sources via ON and OFF status. The 25 DGs showed the enhancement of ANN-BBSA gives a mean absolute error (MAE) of 6.2e−3 with a correlation coefficient of 0.99993, which is closed to 1. The results showed a significant reduction in the cost and emission by 41.88% and 40.7%, respectively. The developed algorithms reduced the energy cost while delivered reliable power towards grid decarbonization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的二值回溯搜索算法在虚拟电厂调度与成本效益评估中的应用
本文提出了一种基于人工神经网络(ANN)的二值回溯搜索算法(BBSA)作为最优调度控制器,应用于IEEE 14总线系统对微电网虚拟电厂(VPP)的控制,并在实际参数和负荷数据上进行了仿真验证。该算法利用风速、太阳辐射、燃料条件、电池充放电和特定小时需求等实际数据,利用最佳二值适应度函数寻找最佳单元,并创建最优调度。其目标是通过优先利用可再生能源来代替国家电网购买来规范电力共享。所开发的基于人工神经网络的BBSA控制器通过开关状态预测源的最优调度。ANN-BBSA增强的25个dg的平均绝对误差(MAE)为6.2 2e−3,相关系数为0.99993,接近于1。结果表明,该方法可显著降低成本41.88%,降低排放40.7%。所开发的算法在降低能源成本的同时,为电网脱碳提供了可靠的电力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of a Portable High Voltage Variable Pulsed Power Source using Flyback Converter and Rotary Spark Gap from a 12V Battery Outdoor Performance of crystalline silicon PV modules in Bogotá - Colombia Improved Dual Switch Non-Isolated High Gain Boost Converter for DC microgrid Application [Copyright notice] Selective Harmonic Elimination PWM for Cascaded H-bridge Multilevel Inverter with Wide Output Voltage Range Using PSO Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1