A Fourier series based expression deformation model for 3D face recognition

Chuanjun Wang, Xuefeng Bai, Tiejun Zhang, X. Niu
{"title":"A Fourier series based expression deformation model for 3D face recognition","authors":"Chuanjun Wang, Xuefeng Bai, Tiejun Zhang, X. Niu","doi":"10.1109/ICNC.2012.6234627","DOIUrl":null,"url":null,"abstract":"This paper presents a Fourier series based expression deformation model for 3D face recognition. Given a set of training 3D face scans with sufficient facial expressions, these face scans are first preprocessed and represented as a series of Fourier series coefficients. Then, the shape residues between the non-neutral and neutral face scans of the same subject are calculated. These residues are supposed to contain the expression deformation patterns and PCA is applied to learn these patterns. The eigenvector with top eigenvalue in the generated lower dimensional subspace of PCA is then used to build the expression deformation model. Experimental results show the feasibility and merits of the proposed expression deformation model in the recognition scenario.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a Fourier series based expression deformation model for 3D face recognition. Given a set of training 3D face scans with sufficient facial expressions, these face scans are first preprocessed and represented as a series of Fourier series coefficients. Then, the shape residues between the non-neutral and neutral face scans of the same subject are calculated. These residues are supposed to contain the expression deformation patterns and PCA is applied to learn these patterns. The eigenvector with top eigenvalue in the generated lower dimensional subspace of PCA is then used to build the expression deformation model. Experimental results show the feasibility and merits of the proposed expression deformation model in the recognition scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于傅立叶级数的三维人脸识别表情变形模型
提出了一种基于傅立叶级数的三维人脸识别表情变形模型。给定一组具有足够面部表情的训练3D面部扫描,首先对这些面部扫描进行预处理,并将其表示为一系列傅立叶级数系数。然后,计算同一受试者的非中性和中性面部扫描之间的形状残差。假设这些残基包含表达式变形模式,并应用主成分分析来学习这些模式。然后利用PCA生成的低维子空间中具有顶特征值的特征向量构建表达式变形模型。实验结果表明了所提出的表情变形模型在识别场景中的可行性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The model about the affection regulation based on partial least regression in the Human-computer interaction HSAQEA based reliability redundancy optimization for complex system Static error correction of the sensor based on SVR Hybrid flexible neural tree for exchange rates forecasting Some comparison on whole-proteome phylogeny of large dsDNA viruses based on dynamical language approach and feature frequency profiles method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1