Evolving feasible linear ordering problem solutions

P. Krömer, V. Snás̃el, J. Platoš
{"title":"Evolving feasible linear ordering problem solutions","authors":"P. Krömer, V. Snás̃el, J. Platoš","doi":"10.1145/1456223.1456293","DOIUrl":null,"url":null,"abstract":"Linear Ordering Problem (LOP) is a well know optimization problem attractive for its complexity (it is a NP-hard problem), rich collection of testing data and variety of real world applications. In this paper, we investigate the usage and performance of two variants of Genetic Algorithms - Mutation Only Genetic Algorithms and Higher Level Chromosome Genetic Algorithms - on the Linear Ordering Problem. Both methods are tested and evaluated on a collection of real world and artificial LOP instances.","PeriodicalId":309453,"journal":{"name":"International Conference on Soft Computing as Transdisciplinary Science and Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Soft Computing as Transdisciplinary Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1456223.1456293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Linear Ordering Problem (LOP) is a well know optimization problem attractive for its complexity (it is a NP-hard problem), rich collection of testing data and variety of real world applications. In this paper, we investigate the usage and performance of two variants of Genetic Algorithms - Mutation Only Genetic Algorithms and Higher Level Chromosome Genetic Algorithms - on the Linear Ordering Problem. Both methods are tested and evaluated on a collection of real world and artificial LOP instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演化可行线性排序问题的解
线性排序问题(LOP)是一个众所周知的优化问题,它的复杂性(它是一个NP-hard问题),丰富的测试数据集合和各种现实世界的应用。本文研究了遗传算法的两种变体——仅突变遗传算法和高级染色体遗传算法在线性排序问题上的应用和性能。两种方法都在真实世界和人工LOP实例上进行了测试和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel cache management strategy for semantic caching in mobile environment Evolutionary multiobjective optimization and multiobjective fuzzy system design Network security simulation and evaluation A software based approach for autonomous projectile attitude and position estimation Fatigue level estimation of bill based on feature-selected acoustic energy pattern by using supervised SOM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1