Mapping Precedence-Constrained Simulation Tasks for a Parallel Environment

J. Sartor, G. Lamont, R. Hammell, T. Hartrum
{"title":"Mapping Precedence-Constrained Simulation Tasks for a Parallel Environment","authors":"J. Sartor, G. Lamont, R. Hammell, T. Hartrum","doi":"10.1109/DMCC.1991.633067","DOIUrl":null,"url":null,"abstract":"The Mapping Problem Classical results on the deterministic precedence- constrained scheduling problem are almost exclusively concerned with a single iteration of the task system. This paper explores the problem of mapping deter- ministic tasks to processors in a parallel simulation environment, with each task iterating multiple times. Counterexamples are shown to demonstrate that mul- tiple passes through an optimal mapping for one iter- ation of a task system may produce less-than-optimal results when compared to mappings based on the it- erative nature of the simulation. A level strategy for assigning iterative tasks to processors is developed, and theoretical and experimental results are discussed for different mapping strategies in a VHDL simulation. This paper examines the classical multiprocessor scheduling problem for application to deterministic simulation systems. The tasks in these systems are characterized by iterative executions: each task exe- cutes more than once in the course of a simulation run. The general task scheduling problem and its relation- ship to the mapping problem for simulation tasks are introduced. The problem space is constrained, lim- iting the scope of the study to systems which map equal-execution time tasks into identical processors. A theoretical basis for the level strategy of iterative task assignment is summarized, and a polynomial- time algorithm based on this strategy is given. The results of hypercube experiments based on different mapping strategies are discussed with application to VHDL logic simulation.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Mapping Problem Classical results on the deterministic precedence- constrained scheduling problem are almost exclusively concerned with a single iteration of the task system. This paper explores the problem of mapping deter- ministic tasks to processors in a parallel simulation environment, with each task iterating multiple times. Counterexamples are shown to demonstrate that mul- tiple passes through an optimal mapping for one iter- ation of a task system may produce less-than-optimal results when compared to mappings based on the it- erative nature of the simulation. A level strategy for assigning iterative tasks to processors is developed, and theoretical and experimental results are discussed for different mapping strategies in a VHDL simulation. This paper examines the classical multiprocessor scheduling problem for application to deterministic simulation systems. The tasks in these systems are characterized by iterative executions: each task exe- cutes more than once in the course of a simulation run. The general task scheduling problem and its relation- ship to the mapping problem for simulation tasks are introduced. The problem space is constrained, lim- iting the scope of the study to systems which map equal-execution time tasks into identical processors. A theoretical basis for the level strategy of iterative task assignment is summarized, and a polynomial- time algorithm based on this strategy is given. The results of hypercube experiments based on different mapping strategies are discussed with application to VHDL logic simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行环境下映射优先约束仿真任务
映射问题确定性优先约束调度问题的经典结果几乎只涉及任务系统的单次迭代。本文探讨了并行仿真环境中,在每个任务迭代多次的情况下,将多任务映射到处理器的问题。反例表明,与基于模拟的it生成特性的映射相比,多次通过任务系统的一次迭代的最优映射可能产生不如最优的结果。提出了一种将迭代任务分配给处理器的层次策略,并讨论了VHDL仿真中不同映射策略的理论和实验结果。本文研究了应用于确定性仿真系统的经典多处理机调度问题。这些系统中的任务以迭代执行为特征:每个任务在模拟运行过程中执行不止一次。介绍了一般任务调度问题及其与仿真任务映射问题的关系。问题空间是有限的,限制了研究的范围,将相同执行时间的任务映射到相同处理器的系统。总结了迭代任务分配分层策略的理论基础,给出了基于分层策略的多项式时间算法。讨论了基于不同映射策略的超立方体实验结果,并将其应用于VHDL逻辑仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Performance Environments for Parallel Systems Using Spanning-Trees for Balancing Dynamic Load on Multiprocessors Optimal Total Exchange on an SIMD Distributed-Memory Hypercube Structured Parallel Programming on Multicomputers Parallel Solutions to the Phase Problem in X-Ray Crystallography: An Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1