Neuromorphic computing with integrated photonics and superconductors

J. Shainline, S. Buckley, R. Mirin, S. Nam
{"title":"Neuromorphic computing with integrated photonics and superconductors","authors":"J. Shainline, S. Buckley, R. Mirin, S. Nam","doi":"10.1109/ICRC.2016.7738694","DOIUrl":null,"url":null,"abstract":"We present a hardware platform combining integrated photonics with superconducting electronics for large-scale neuromorphic computing. Semiconducting few-photon light-emitting diodes work in conjunction with superconducting-nanowire single-photon detectors to behave as spiking neurons. These neurons are connected through a network of waveguides, and variable weights of connection can be implemented using several approaches. These processing units can operate at 20 MHz with fully asynchronous activity, light-speed-limited latency, and power densities on the order of 1 mW/cm2. The processing units achieve an energy efficiency of 20 aJ/synapse event, an improvement of six orders of magnitude over recent CMOS demonstrations [1]. We present calculations showing this approach could scale to interconnectivity near that of the human brain, and could surpass the brain in speed and efficiency.","PeriodicalId":387008,"journal":{"name":"2016 IEEE International Conference on Rebooting Computing (ICRC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Rebooting Computing (ICRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRC.2016.7738694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a hardware platform combining integrated photonics with superconducting electronics for large-scale neuromorphic computing. Semiconducting few-photon light-emitting diodes work in conjunction with superconducting-nanowire single-photon detectors to behave as spiking neurons. These neurons are connected through a network of waveguides, and variable weights of connection can be implemented using several approaches. These processing units can operate at 20 MHz with fully asynchronous activity, light-speed-limited latency, and power densities on the order of 1 mW/cm2. The processing units achieve an energy efficiency of 20 aJ/synapse event, an improvement of six orders of magnitude over recent CMOS demonstrations [1]. We present calculations showing this approach could scale to interconnectivity near that of the human brain, and could surpass the brain in speed and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成光子学和超导体的神经形态计算
我们提出了一个结合集成光子学和超导电子学的硬件平台,用于大规模的神经形态计算。半导体少光子发光二极管与超导纳米线单光子探测器一起工作,就像尖峰神经元一样。这些神经元通过波导网络连接,并且可以使用几种方法实现可变连接权。这些处理单元可以在20mhz下工作,具有完全异步活动,光速限制延迟,功率密度约为1mw /cm2。处理单元实现了20 aJ/突触事件的能量效率,比最近的CMOS演示提高了6个数量级。我们现在的计算表明,这种方法可以扩展到接近人类大脑的互联性,并且可以在速度和效率上超过大脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing reconfigurable large-scale deep learning systems using stochastic computing Bayesian sensor fusion with fast and low power stochastic circuits Technology considerations for neuromorphic computing A functional architecture for scalable quantum computing Optical implementation of probabilistic graphical models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1