Liquid Silicon: A Data-Centric Reconfigurable Architecture Enabled by RRAM Technology

Yue Zha, J. Li
{"title":"Liquid Silicon: A Data-Centric Reconfigurable Architecture Enabled by RRAM Technology","authors":"Yue Zha, J. Li","doi":"10.1145/3174243.3174244","DOIUrl":null,"url":null,"abstract":"This paper presents a data-centric reconfigurable architecture, namely Liquid Silicon, enabled by emerging non-volatile memory, i.e., RRAM. Compared to the heterogeneous architecture of commercial FPGAs, Liquid Silicon is inherently a homogeneous architecture comprising a two-dimensional (2D) array of identical 'tiles'. Each tile can be configured into one or a combination of four modes: TCAM, logic, interconnect, and memory. Such flexibility allows users to partition resources based on applications? needs, in contrast to the fixed hardware design using dedicated hard IP blocks in FPGAs. In addition to better resource usage, its 'memory friendly' architecture effectively addresses the limitations of commercial FPGAs i.e., scarce on-chip memory resources, making it an effective complement to FPGAs. Moreover, its coarse-grained logic implementation results in shallower logic depth, less inter-tile routing overhead, and thus smaller area and better performance, compared with its FPGA counterpart. Our study shows that, on average, for both traditional and emerging applications, we achieve 62% area reduction, 27% speedup and 31% improvement in energy efficiency when mapping applications onto Liquid Silicon instead of FPGAs.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents a data-centric reconfigurable architecture, namely Liquid Silicon, enabled by emerging non-volatile memory, i.e., RRAM. Compared to the heterogeneous architecture of commercial FPGAs, Liquid Silicon is inherently a homogeneous architecture comprising a two-dimensional (2D) array of identical 'tiles'. Each tile can be configured into one or a combination of four modes: TCAM, logic, interconnect, and memory. Such flexibility allows users to partition resources based on applications? needs, in contrast to the fixed hardware design using dedicated hard IP blocks in FPGAs. In addition to better resource usage, its 'memory friendly' architecture effectively addresses the limitations of commercial FPGAs i.e., scarce on-chip memory resources, making it an effective complement to FPGAs. Moreover, its coarse-grained logic implementation results in shallower logic depth, less inter-tile routing overhead, and thus smaller area and better performance, compared with its FPGA counterpart. Our study shows that, on average, for both traditional and emerging applications, we achieve 62% area reduction, 27% speedup and 31% improvement in energy efficiency when mapping applications onto Liquid Silicon instead of FPGAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液态硅:由RRAM技术支持的以数据为中心的可重构架构
本文提出了一种以数据为中心的可重构架构,即液态硅,它由新兴的非易失性存储器(即RRAM)实现。与商用fpga的异构架构相比,液态硅本质上是一种由相同“瓦片”组成的二维(2D)阵列的同质架构。每个贴片可以配置成一种或四种模式的组合:TCAM,逻辑,互连和内存。这种灵活性允许用户基于应用程序对资源进行分区。不同于fpga中使用专用硬IP块的固定硬件设计。除了更好的资源利用外,其“内存友好”架构有效地解决了商用fpga的局限性,即片上内存资源稀缺,使其成为fpga的有效补充。此外,与FPGA相比,其粗粒度逻辑实现的逻辑深度更浅,层间路由开销更少,因此面积更小,性能更好。我们的研究表明,平均而言,对于传统和新兴应用,当将应用映射到液态硅而不是fpga上时,我们实现了62%的面积减少,27%的加速和31%的能效提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Architecture and Circuit Design of an All-Spintronic FPGA Session details: Session 6: High Level Synthesis 2 A FPGA Friendly Approximate Computing Framework with Hybrid Neural Networks: (Abstract Only) Software/Hardware Co-design for Multichannel Scheduling in IEEE 802.11p MLME: (Abstract Only) Session details: Special Session: Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1