Speaker-independent phone modeling based on speaker-dependent HMMs' composition and clustering

T. Kosaka, S. Matsunaga, Mikio Kuraoka
{"title":"Speaker-independent phone modeling based on speaker-dependent HMMs' composition and clustering","authors":"T. Kosaka, S. Matsunaga, Mikio Kuraoka","doi":"10.1109/ICASSP.1995.479623","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method for speaker-independent phone modeling based on the composition and clustering method (CCL) of speaker-dependent HMMs. In general, HMM phone models are trained by the Baum-Welch (B-W) algorithm. We, however, propose a speaker-independent phone modeling in which speaker-dependent (SD) HMMs are combined to form speaker-independent (SI) HMMs without parameter reestimation. Furthermore, by using this method, we investigate how different kinds of reference speakers influence the development of the SI models. The method is evaluated in Japanese phoneme and phrase recognition experiments. Results show that the performance of this method is similar to the conventional B-W algorithm's with great reduction of computational cost.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes a novel method for speaker-independent phone modeling based on the composition and clustering method (CCL) of speaker-dependent HMMs. In general, HMM phone models are trained by the Baum-Welch (B-W) algorithm. We, however, propose a speaker-independent phone modeling in which speaker-dependent (SD) HMMs are combined to form speaker-independent (SI) HMMs without parameter reestimation. Furthermore, by using this method, we investigate how different kinds of reference speakers influence the development of the SI models. The method is evaluated in Japanese phoneme and phrase recognition experiments. Results show that the performance of this method is similar to the conventional B-W algorithm's with great reduction of computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扬声器相关hmm组成和聚类的扬声器独立电话建模
本文提出了一种基于基于扬声器相关hmm的合成聚类方法(CCL)的独立扬声器电话建模方法。一般来说,HMM手机模型是由Baum-Welch (B-W)算法训练的。然而,我们提出了一个独立于扬声器的手机建模,其中扬声器相关(SD) hmm被组合成扬声器独立(SI) hmm,而不需要参数重估。此外,我们还利用该方法研究了不同类型的参考说话者对SI模型发展的影响。在日语音素和短语识别实验中对该方法进行了评价。结果表明,该方法的性能与传统的B-W算法相当,并且大大降低了计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language identification with phonological and lexical models Computationally efficient wavelet packet coding of wide-band stereo audio signals Signaling techniques using solitons Blind source detection and separation using second order non-stationarity On blind channel identification for impulsive signal environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1