Virtual Minimization of Residual Stress and Deflection Error in the Five-Axis Milling of Turbine Blades

Mohsen Soori, Mohammed Asmael
{"title":"Virtual Minimization of Residual Stress and Deflection Error in the Five-Axis Milling of Turbine Blades","authors":"Mohsen Soori, Mohammed Asmael","doi":"10.5545/SV-JME.2021.7113","DOIUrl":null,"url":null,"abstract":"To simulate and analyse the real machined parts in virtual environments, virtual machining systems are applied to the production processes. Due to friction, chip forming, and the heat produced in the cutting zone, parts produced using machining operation have residual stress effects. The machining force and machining temperature can cause the deflection error in the machined turbine blades, which should be minimized to increase the accuracy of machined blades. To minimize the residual stress and deflection error of machined parts, optimized machining parameters can be obtained. In the present research work, the application of a virtual machining system is presented to predict and minimize the residual stress and deflection error in a five-axis milling operations of turbine blades. In order to predict the residual stress and deflection error in machined turbine blades, finite element analysis is implemented. Moreover, to minimize the residual stress and deflection error in machined turbine blades, optimized parameters of machining operations are obtained by using a genetic algorithm. To validate the research work, experimentally determining residual stress by using a X-ray diffraction method from the machined turbine blades is compared with the finite element results obtained from the virtual machining system. Also, in order to obtain the deflection error, the machined blades are measured by using the CMM machines. Thus, the accuracy and reliability of machined turbine blades can be increased by analysing and minimizing the residual stress and deflection error in virtual environments.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/SV-JME.2021.7113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

To simulate and analyse the real machined parts in virtual environments, virtual machining systems are applied to the production processes. Due to friction, chip forming, and the heat produced in the cutting zone, parts produced using machining operation have residual stress effects. The machining force and machining temperature can cause the deflection error in the machined turbine blades, which should be minimized to increase the accuracy of machined blades. To minimize the residual stress and deflection error of machined parts, optimized machining parameters can be obtained. In the present research work, the application of a virtual machining system is presented to predict and minimize the residual stress and deflection error in a five-axis milling operations of turbine blades. In order to predict the residual stress and deflection error in machined turbine blades, finite element analysis is implemented. Moreover, to minimize the residual stress and deflection error in machined turbine blades, optimized parameters of machining operations are obtained by using a genetic algorithm. To validate the research work, experimentally determining residual stress by using a X-ray diffraction method from the machined turbine blades is compared with the finite element results obtained from the virtual machining system. Also, in order to obtain the deflection error, the machined blades are measured by using the CMM machines. Thus, the accuracy and reliability of machined turbine blades can be increased by analysing and minimizing the residual stress and deflection error in virtual environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡轮叶片五轴铣削中残余应力和偏转误差的虚拟最小化
为了在虚拟环境中对实际加工的零件进行仿真和分析,将虚拟加工系统应用于生产过程中。由于摩擦、切屑形成和切削区产生的热量,使用机加工操作生产的零件具有残余应力效应。加工力和加工温度会引起涡轮叶片的偏转误差,应尽量减少偏转误差,以提高叶片的加工精度。为了使被加工零件的残余应力和挠度误差最小,可以得到优化的加工参数。在本研究中,提出了一种虚拟加工系统的应用,以预测和最小化涡轮叶片五轴铣削加工中的残余应力和偏转误差。为了预测机加工涡轮叶片的残余应力和偏转误差,对其进行了有限元分析。为了使涡轮叶片加工后的残余应力和偏转误差最小,采用遗传算法对加工工艺参数进行优化。为了验证研究工作,利用x射线衍射法对涡轮叶片进行了残余应力的实验测定,并与虚拟加工系统得到的有限元结果进行了比较。同时,利用三坐标测量机对加工后的叶片进行了测量,得到了叶片的挠度误差。因此,通过分析和最小化虚拟环境中的残余应力和偏转误差,可以提高机加工涡轮叶片的精度和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling and Multi-objective Optimization of Elastic Abrasive Cutting of C45 and 42Cr4 Steels Review of Peridynamics: Theory, Applications, and Future Perspectives Investigation of Cutting Performance of a Circular Saw Blade Based on ANSYS/LS-DYNA Study of Bondura® Expanding PIN System – Combined Axial and Radial Locking System Extremal-Micro Genetic Algorithm Model for Time-Cost Optimization with Optimal Labour Productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1