Achieving CO2 emission targets for energy consumption at Canadian manufacturing and beyond; using Hybrid Optimization Model

Arash Marzi, E. Marzi, H. Marzi
{"title":"Achieving CO2 emission targets for energy consumption at Canadian manufacturing and beyond; using Hybrid Optimization Model","authors":"Arash Marzi, E. Marzi, H. Marzi","doi":"10.1109/IJCNN.2013.6706881","DOIUrl":null,"url":null,"abstract":"Due to sporadic climate change and global warming, world have signed international protocols promising to reduce their nation's emissions. This study focuses on the application of the bees algorithm, embedded with an artificial neural network, to determine practical yearly reductions for minimizing oil, natural gas, and coal emissions as by-products of energy consumption in Canada's manufacturing sector based on the Copenhagen Targets for Canada for 2020.","PeriodicalId":393869,"journal":{"name":"2010 IEEE Electrical Power & Energy Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electrical Power & Energy Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Due to sporadic climate change and global warming, world have signed international protocols promising to reduce their nation's emissions. This study focuses on the application of the bees algorithm, embedded with an artificial neural network, to determine practical yearly reductions for minimizing oil, natural gas, and coal emissions as by-products of energy consumption in Canada's manufacturing sector based on the Copenhagen Targets for Canada for 2020.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现加拿大制造业及其他行业能源消耗的二氧化碳排放目标;使用混合优化模型
由于零星的气候变化和全球变暖,世界各国都签署了承诺减少本国排放的国际协议。本研究的重点是应用嵌入人工神经网络的蜜蜂算法,根据加拿大2020年的哥本哈根目标,确定加拿大制造业能源消耗副产品石油、天然气和煤炭排放的实际年减量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Static security assessment using radial basis function neural networks based on growing and pruning method Fuzzy unit commitment using the Ant Colony Search Algorithm Transient states simulation in power plant auxiliary electrical system A centralized controller to control power demands of electric water heaters for peek shaving of total house-hold power demands Wind power forecasting based on econometrics theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1