Temporal Action Detection Based on Hierarchical Object Detection Networks

Yi-Hui Wu, Wen-Jiin Tsai, Hua-Tsung Chen
{"title":"Temporal Action Detection Based on Hierarchical Object Detection Networks","authors":"Yi-Hui Wu, Wen-Jiin Tsai, Hua-Tsung Chen","doi":"10.1109/Ubi-Media.2019.00031","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of temporal action detection from untrimmed videos. Considering that actions can be recognized by the occurrence of objects and the corresponding moving information in the video, a hierarchical model is proposed which consists of two object detection networks to do temporal action detection. The first network is used to detect objects in each frame, and the second one is for temporal action detection. We also proposed a method which converts the object detection results of the first network into a new type of frame so that it can be fed to the second network. The generated frame has six channels with spatiotemporal information beneficial to action detection. Quantitative results on THUMOS14 dataset demonstrate the superior of the proposed model with satisfactory performance gains over state-of-the-art action detection methods.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of temporal action detection from untrimmed videos. Considering that actions can be recognized by the occurrence of objects and the corresponding moving information in the video, a hierarchical model is proposed which consists of two object detection networks to do temporal action detection. The first network is used to detect objects in each frame, and the second one is for temporal action detection. We also proposed a method which converts the object detection results of the first network into a new type of frame so that it can be fed to the second network. The generated frame has six channels with spatiotemporal information beneficial to action detection. Quantitative results on THUMOS14 dataset demonstrate the superior of the proposed model with satisfactory performance gains over state-of-the-art action detection methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分层目标检测网络的时间动作检测
本文解决了从未修剪视频中检测时间动作的问题。考虑到动作可以通过视频中物体的出现和相应的运动信息来识别,提出了一种由两个物体检测网络组成的分层模型来进行时间动作检测。第一个网络用于检测每帧中的目标,第二个网络用于检测时间动作。我们还提出了一种方法,该方法将第一网络的目标检测结果转换成一种新的帧,以便将其馈送到第二网络。生成的帧具有6个通道,其中包含有利于动作检测的时空信息。在THUMOS14数据集上的定量结果表明,所提出的模型优于最先进的动作检测方法,具有令人满意的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1