Implementation of a fast coral detector using a supervised machine learning and Gabor Wavelet feature descriptors

E. Tusa, Alan Reynolds, D. Lane, N. Robertson, H. Villegas, A. Bosnjak
{"title":"Implementation of a fast coral detector using a supervised machine learning and Gabor Wavelet feature descriptors","authors":"E. Tusa, Alan Reynolds, D. Lane, N. Robertson, H. Villegas, A. Bosnjak","doi":"10.1109/SSCO.2014.7000371","DOIUrl":null,"url":null,"abstract":"The task of reef restoration is very challenging for volunteer SCUBA divers, if it has to be carried out at deep sea, 200 meters, and low temperatures. This kind of task can be properly performed by an Autonomous Underwater Vehicle (AUV); able to detect the location of reef areas and approach them. The aim of this study is the development of a vision system for coral detections based on supervised machine learning. In order to achieve this, we use a bank of Gabor Wavelet filters to extract texture feature descriptors, we use learning classifiers, from OpenCV library, to discriminate coral from non-coral reef. We compare: running time, accuracy, specificity and sensitivity of nine different learning classifiers. We select Decision Trees algorithm because it shows the fastest and the most accurate performance. For the evaluation of this system, we use a database of 621 images (developed for this purpose), that represents the coral reef located in Belize: 110 for training the classifiers and 511 for testing the coral detector.","PeriodicalId":345550,"journal":{"name":"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensor Systems for a Changing Ocean (SSCO).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCO.2014.7000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The task of reef restoration is very challenging for volunteer SCUBA divers, if it has to be carried out at deep sea, 200 meters, and low temperatures. This kind of task can be properly performed by an Autonomous Underwater Vehicle (AUV); able to detect the location of reef areas and approach them. The aim of this study is the development of a vision system for coral detections based on supervised machine learning. In order to achieve this, we use a bank of Gabor Wavelet filters to extract texture feature descriptors, we use learning classifiers, from OpenCV library, to discriminate coral from non-coral reef. We compare: running time, accuracy, specificity and sensitivity of nine different learning classifiers. We select Decision Trees algorithm because it shows the fastest and the most accurate performance. For the evaluation of this system, we use a database of 621 images (developed for this purpose), that represents the coral reef located in Belize: 110 for training the classifiers and 511 for testing the coral detector.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用监督机器学习和Gabor小波特征描述符实现快速珊瑚探测器
如果要在200米的深海和低温下进行,那么对志愿者来说,恢复珊瑚礁的任务是非常具有挑战性的。这种任务可以由自主水下航行器(AUV)来完成;能够探测到礁石区域的位置并接近它们。本研究的目的是开发一种基于监督机器学习的珊瑚检测视觉系统。为了实现这一点,我们使用一组Gabor小波滤波器来提取纹理特征描述符,我们使用OpenCV库中的学习分类器来区分珊瑚和非珊瑚礁。我们比较了九种不同学习分类器的运行时间、准确率、特异性和灵敏度。我们选择决策树算法是因为它表现出最快和最准确的性能。为了对该系统进行评估,我们使用了一个包含621张图像(为此目的开发)的数据库,这些图像代表了位于伯利兹的珊瑚礁:110张用于训练分类器,511张用于测试珊瑚探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Range and depth estimation of bowhead whale calls in the Arctic using a single hydrophone Passive acoustic monitoring of coastal dynamical oceanographic phenomena using single hydrophone A Sensor Web architecture for sharing oceanographic sensor data NeXOS contribution to the adaptation of system analysis engineering tools for mature and reliable ocean sensors COMMON SENSE: Cost-effective sensors, interoperable with international existing ocean observing systems, to meet EU policies requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1