CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware

Hamid Nejatollahi, Saransh Gupta, M. Imani, T. Simunic, Rosario Cammarota, N. Dutt
{"title":"CryptoPIM: In-memory Acceleration for Lattice-based Cryptographic Hardware","authors":"Hamid Nejatollahi, Saransh Gupta, M. Imani, T. Simunic, Rosario Cammarota, N. Dutt","doi":"10.1109/DAC18072.2020.9218730","DOIUrl":null,"url":null,"abstract":"Quantum computers promise to solve hard mathematical problems such as integer factorization and discrete logarithms in polynomial time, making standardized public-key cryptosystems insecure. Lattice-Based Cryptography (LBC) is a promising post-quantum public key cryptographic protocol that could replace standardized public key cryptography, thanks to the inherent post-quantum resistant properties, efficiency, and versatility. A key mathematical tool in LBC is the Number Theoretic Transform (NTT), a common method to compute polynomial multiplication. It is the most compute-intensive routine and requires acceleration for practical deployment of LBC protocols. In this paper, we propose CryptoPIM, a high-throughput Processing In-Memory (PIM) accelerator for NTT-based polynomial multiplier with the support of polynomials with degrees up to 32k. Compared to the fastest FPGA implementation of an NTT-based multiplier, CryptoPIM achieves on average 31x throughput improvement with the same energy and only 28% performance reduction, thereby showing promise for practical deployment of LBC.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Quantum computers promise to solve hard mathematical problems such as integer factorization and discrete logarithms in polynomial time, making standardized public-key cryptosystems insecure. Lattice-Based Cryptography (LBC) is a promising post-quantum public key cryptographic protocol that could replace standardized public key cryptography, thanks to the inherent post-quantum resistant properties, efficiency, and versatility. A key mathematical tool in LBC is the Number Theoretic Transform (NTT), a common method to compute polynomial multiplication. It is the most compute-intensive routine and requires acceleration for practical deployment of LBC protocols. In this paper, we propose CryptoPIM, a high-throughput Processing In-Memory (PIM) accelerator for NTT-based polynomial multiplier with the support of polynomials with degrees up to 32k. Compared to the fastest FPGA implementation of an NTT-based multiplier, CryptoPIM achieves on average 31x throughput improvement with the same energy and only 28% performance reduction, thereby showing promise for practical deployment of LBC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于格的加密硬件的内存加速
量子计算机有望在多项式时间内解决整数分解和离散对数等数学难题,使标准化的公钥密码系统变得不安全。基于Lattice-Based Cryptography (LBC)是一种很有前途的后量子公钥加密协议,由于其固有的抗后量子特性、效率和通用性,它可以取代标准化的公钥加密。数论变换(NTT)是LBC中一个重要的数学工具,它是一种计算多项式乘法的常用方法。它是计算最密集的例程,需要加速LBC协议的实际部署。在本文中,我们提出了CryptoPIM,一个基于ntt的多项式乘子的高吞吐量内存处理(PIM)加速器,支持度高达32k的多项式。与基于ntt的乘法器的最快FPGA实现相比,CryptoPIM在相同的能量下实现了平均31倍的吞吐量提高,而性能仅降低了28%,因此显示出LBC实际部署的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs AXI HyperConnect: A Predictable, Hypervisor-level Interconnect for Hardware Accelerators in FPGA SoC Pythia: Intellectual Property Verification in Zero-Knowledge Reuse-trap: Re-purposing Cache Reuse Distance to Defend against Side Channel Leakage Navigator: Dynamic Multi-kernel Scheduling to Improve GPU Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1