Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction

Ye Liu, Weipeng Cao, Yiwen Liu, Dachuan Li, Qiang Wang
{"title":"Ensemble Online Sequential Extreme Learning Machine for Air Quality Prediction","authors":"Ye Liu, Weipeng Cao, Yiwen Liu, Dachuan Li, Qiang Wang","doi":"10.1109/ICCSSE52761.2021.9545089","DOIUrl":null,"url":null,"abstract":"Online Sequential Extreme Learning Machine (OS-ELM) has been confirmed by numerous studies to be an effective algorithm for online learning scenarios. However, we found that some parameters of OS-ELM are randomly assigned and remain unchanged in the subsequent learning process, which leads to great instability in the model performance in practice. To alleviate this problem, we propose a novel ensemble OS-ELM algorithm (EOS-ELM-R) for solving air quality prediction problems. EOS-ELM-R uses multiple distribution functions to initialize the random parameters of the base OS-ELM models and its final output is the average of the predictions of these base models. Extensive experimental results on two real-world air quality prediction problems show that EOS-ELM-R is effective, and it can achieve better generalization capabilities than similar algorithms.","PeriodicalId":143697,"journal":{"name":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSSE52761.2021.9545089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Online Sequential Extreme Learning Machine (OS-ELM) has been confirmed by numerous studies to be an effective algorithm for online learning scenarios. However, we found that some parameters of OS-ELM are randomly assigned and remain unchanged in the subsequent learning process, which leads to great instability in the model performance in practice. To alleviate this problem, we propose a novel ensemble OS-ELM algorithm (EOS-ELM-R) for solving air quality prediction problems. EOS-ELM-R uses multiple distribution functions to initialize the random parameters of the base OS-ELM models and its final output is the average of the predictions of these base models. Extensive experimental results on two real-world air quality prediction problems show that EOS-ELM-R is effective, and it can achieve better generalization capabilities than similar algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于空气质量预测的集合在线序列极限学习机
在线顺序极限学习机(OS-ELM)是一种有效的在线学习算法,已被大量研究证实。然而,我们发现OS-ELM的一些参数是随机分配的,并且在随后的学习过程中保持不变,这导致模型在实践中的性能有很大的不稳定性。为了解决这一问题,我们提出了一种新的集成OS-ELM算法(EOS-ELM-R)来解决空气质量预测问题。EOS-ELM-R使用多个分布函数初始化基本OS-ELM模型的随机参数,其最终输出是这些基本模型预测的平均值。在两个现实世界空气质量预测问题上的大量实验结果表明,EOS-ELM-R是有效的,并且比同类算法具有更好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Research on Target Unreachable Problem of Path Planning Based on Artificial Potential Field for an Unmanned Aerial Vehicle Development of a Modified Bouc-Wen Model for Butterfly Hysteresis Behaviors Embedded Control of Scanning Mirror A Durian Variety Identifier Using Canny Edge and CNN Inverse Control of Nonlinear Distortion in Adaptive System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1