Generating and Evaluating Text Summarisations using Text-representing Centroids(TRC)

Yanakorn Ruamsuk, A. Mingkhwan, H. Unger
{"title":"Generating and Evaluating Text Summarisations using Text-representing Centroids(TRC)","authors":"Yanakorn Ruamsuk, A. Mingkhwan, H. Unger","doi":"10.1109/RI2C56397.2022.9910272","DOIUrl":null,"url":null,"abstract":"Short abstracts and text summarisation are gaining increasing the importance of tools for filtering out the most relevant articles due to the increased documents and information. The following article uses TRCs to support text summaries’ generation and evaluation. A new method of document summarisation has been introduced based on text-representing centroids (TRC). TRC-based similarity measure delivers good similarity estimations for both methods, which are in the excellent range of 75 percent on average.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Short abstracts and text summarisation are gaining increasing the importance of tools for filtering out the most relevant articles due to the increased documents and information. The following article uses TRCs to support text summaries’ generation and evaluation. A new method of document summarisation has been introduced based on text-representing centroids (TRC). TRC-based similarity measure delivers good similarity estimations for both methods, which are in the excellent range of 75 percent on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用文本表示质心(TRC)生成和评估文本摘要
由于文件和信息的增加,简短的摘要和文本摘要越来越成为过滤出最相关文章的工具的重要性。下面的文章使用trc来支持文本摘要的生成和评估。提出了一种基于文本表示质心(TRC)的文档摘要方法。基于trc的相似性度量为两种方法提供了很好的相似性估计,平均在75%的优秀范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperparameter Tuning in Convolutional Neural Network for Face Touching Activity Recognition using Accelerometer Data RI2C 2022 Cover Page CNN based Automatic Detection of Defective Photovoltaic Modules using Aerial Imagery Metaverse for Developing Engineering Competency A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1