A lower bound for linear approximate compaction

S. Chaudhuri
{"title":"A lower bound for linear approximate compaction","authors":"S. Chaudhuri","doi":"10.1109/ISTCS.1993.253487","DOIUrl":null,"url":null,"abstract":"The lambda -approximate compaction problem is: given an input array of n values, each either 0 or 1, place each value in the output array so that all the 1s are in the first (1+ lambda )k array locations, where k is the number of 1's in the input. lambda is an accuracy parameter. This problem is of fundamental importance in parallel computation because of its applications to processor allocation and approximate counting. When lambda is a constant, the problem is called linear approximate compaction (LAC). On the CRCW PRAM model, there is an algorithm that solves approximate compaction in O((log log n)/sup 3/) time for lambda =/sup 1///sub loglogn/, using /sup n///sub (loglogn)3/ processors. This is close to the best possible. Specifically, the authors, prove that LAC requires Omega (log log n) time using O(n) processors. They also give a tradeoff between lambda and the processing time. For in <1, and lambda =n/sup in /, the time required is Omega (log/sup 1///sub in /).<<ETX>>","PeriodicalId":281109,"journal":{"name":"[1993] The 2nd Israel Symposium on Theory and Computing Systems","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] The 2nd Israel Symposium on Theory and Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1993.253487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The lambda -approximate compaction problem is: given an input array of n values, each either 0 or 1, place each value in the output array so that all the 1s are in the first (1+ lambda )k array locations, where k is the number of 1's in the input. lambda is an accuracy parameter. This problem is of fundamental importance in parallel computation because of its applications to processor allocation and approximate counting. When lambda is a constant, the problem is called linear approximate compaction (LAC). On the CRCW PRAM model, there is an algorithm that solves approximate compaction in O((log log n)/sup 3/) time for lambda =/sup 1///sub loglogn/, using /sup n///sub (loglogn)3/ processors. This is close to the best possible. Specifically, the authors, prove that LAC requires Omega (log log n) time using O(n) processors. They also give a tradeoff between lambda and the processing time. For in <1, and lambda =n/sup in /, the time required is Omega (log/sup 1///sub in /).<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性近似压实的下界
lambda -近似压缩问题是:给定一个包含n个值的输入数组,每个值要么为0,要么为1,将每个值放入输出数组中,以便所有的1都位于数组的前(1+ lambda)k个位置,其中k是输入中1的数量。Lambda是一个精度参数。这个问题在并行计算中具有重要的基础意义,因为它适用于处理器分配和近似计数。当lambda为常数时,这个问题称为线性近似压缩(LAC)。在CRCW PRAM模型上,有一种算法可以在O((log logn) /sup 3/)时间内解决lambda =/sup 1///sub loglogn/的近似压缩问题,使用/sup n///sub (loglogn)3/处理器。这几乎是最好的了。具体来说,作者证明了LAC使用O(n)个处理器需要Omega (log log n)时间。它们还在lambda和处理时间之间进行了权衡。For in >
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive source routing in high-speed networks Approximating bounded 0-1 integer linear programs Optimal speedup of Las Vegas algorithms Analog computation via neural networks Maintaining the 4-edge-connected components of a graph on-line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1