Comparative Analysis on Aspect-based Sentiment using BERT

Aditi Tiwari, Khushboo Tewari, Sukriti Dawar, Ankit Singh, Nisha Rathee
{"title":"Comparative Analysis on Aspect-based Sentiment using BERT","authors":"Aditi Tiwari, Khushboo Tewari, Sukriti Dawar, Ankit Singh, Nisha Rathee","doi":"10.1109/ICCMC56507.2023.10084294","DOIUrl":null,"url":null,"abstract":"Aspect-based Sentiment Analysis (ABSA) is a complex model within the domain of Sentiment Analysis (SA) tasks which deals with classifying the sentiments related to particular aspects (or targets) in the given text. ABSA task has gained popularity due to its various sub-tasks related to the aspect-based sentiment analysis task. This work provides a comparative study of various approaches used to solve the ABSA task using the BERT technique. The selected approaches include a fine-tuned BERT model, adversarial training using BERT (Bidirectional Encoder Representations from Transformers) and the incorporation of disentangled attention in BERT or the DeBERTa for the ABSA task. One of the challenges faced during implementation of the ABSA task is that it requires an in-depth understanding about the language. Experiment results indicate that the approach, which uses the fine-tuned BERT model yields the best mean F1 score of 85.65 and the best mean accuracy score of 85.98 is yielded by the DeBERTa model.","PeriodicalId":197059,"journal":{"name":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC56507.2023.10084294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aspect-based Sentiment Analysis (ABSA) is a complex model within the domain of Sentiment Analysis (SA) tasks which deals with classifying the sentiments related to particular aspects (or targets) in the given text. ABSA task has gained popularity due to its various sub-tasks related to the aspect-based sentiment analysis task. This work provides a comparative study of various approaches used to solve the ABSA task using the BERT technique. The selected approaches include a fine-tuned BERT model, adversarial training using BERT (Bidirectional Encoder Representations from Transformers) and the incorporation of disentangled attention in BERT or the DeBERTa for the ABSA task. One of the challenges faced during implementation of the ABSA task is that it requires an in-depth understanding about the language. Experiment results indicate that the approach, which uses the fine-tuned BERT model yields the best mean F1 score of 85.65 and the best mean accuracy score of 85.98 is yielded by the DeBERTa model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BERT的面向方面情感的比较分析
基于方面的情感分析(ABSA)是情感分析(SA)任务领域中的一个复杂模型,它处理与给定文本中特定方面(或目标)相关的情感分类。ABSA任务由于其与基于方面的情感分析任务相关的各种子任务而受到欢迎。这项工作提供了使用BERT技术解决ABSA任务的各种方法的比较研究。所选择的方法包括一个微调的BERT模型,使用BERT(来自变形金刚的双向编码器表示)的对抗性训练,以及在BERT或DeBERTa中结合解纠缠的注意力来完成ABSA任务。在实现ABSA任务期间面临的挑战之一是它需要对语言有深入的理解。实验结果表明,采用微调BERT模型的方法F1平均得分为85.65,DeBERTa模型的准确率平均得分为85.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of FPGA based Rescue Bot Prediction on Impact of Electronic Gadgets in Students Life using Machine Learning Comparison of Machine Learning Techniques for Prediction of Diabetes An Android Application for Smart Garbage Monitoring System using Internet of Things (IoT) Human Disease Prediction based on Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1