{"title":"Theory and Experiments on Tracking of the Repetitive Signals","authors":"H. Kazerooni, K. Narayanan","doi":"10.1109/ACC.1989.4173222","DOIUrl":null,"url":null,"abstract":"The work presented here is a simple feedback controller methodology that allows for exact tracking of the sinusoidal input signals and rejection of the sinusoidal disturbances in a closed loop control system. The control method is motivated by a mathematical inequality that expresses the tracking and disturbance rejection requirements for a closed loop system. The exact tracking of the input command at a particular frequency requires an infinite loop gain for the system at the frequency of the input command. A second order undamped transfer function is cascaded to teach input channel to increase the loop transfer function gain at the frequency of the input command. A feedback controller is then designed via the LQG/LTR method to stabilize the system while the loop gain remains large at the frequency of the input. The method is experimentally verified on a single axis servo system and extended to multivariable systems.","PeriodicalId":383719,"journal":{"name":"1989 American Control Conference","volume":"60 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1989 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1989.4173222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The work presented here is a simple feedback controller methodology that allows for exact tracking of the sinusoidal input signals and rejection of the sinusoidal disturbances in a closed loop control system. The control method is motivated by a mathematical inequality that expresses the tracking and disturbance rejection requirements for a closed loop system. The exact tracking of the input command at a particular frequency requires an infinite loop gain for the system at the frequency of the input command. A second order undamped transfer function is cascaded to teach input channel to increase the loop transfer function gain at the frequency of the input command. A feedback controller is then designed via the LQG/LTR method to stabilize the system while the loop gain remains large at the frequency of the input. The method is experimentally verified on a single axis servo system and extended to multivariable systems.