A Multi-Objective Evolutionary Algorithm Based on Principal Component Analysis and Grid Division

Mei Ma, Hecheng Li, Jing Huang
{"title":"A Multi-Objective Evolutionary Algorithm Based on Principal Component Analysis and Grid Division","authors":"Mei Ma, Hecheng Li, Jing Huang","doi":"10.1109/CIS2018.2018.00051","DOIUrl":null,"url":null,"abstract":"In order to effectively solve the many objective optimization problems (MaOPs), a new multi-objective evolutionary algorithm is proposed. Firstly, utilizes the principal component analysis (PCA) to reduce the dimension of objective space. The main idea is do a correlation analysis between objectives. Secondly, puts forward a new grid division method. In the course of dividing, make sure all grid sizes are equal. The simulation illustrates the efficiency of the proposed algorithm.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to effectively solve the many objective optimization problems (MaOPs), a new multi-objective evolutionary algorithm is proposed. Firstly, utilizes the principal component analysis (PCA) to reduce the dimension of objective space. The main idea is do a correlation analysis between objectives. Secondly, puts forward a new grid division method. In the course of dividing, make sure all grid sizes are equal. The simulation illustrates the efficiency of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主成分分析和网格划分的多目标进化算法
为了有效地解决多目标优化问题,提出了一种新的多目标进化算法。首先,利用主成分分析(PCA)对客观空间进行降维;主要思想是对目标之间进行相关性分析。其次,提出了一种新的网格划分方法。在划分过程中,确保所有网格大小相等。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Real-Time Location Privacy Protection Method Based on Space Transformation Cryptanalysis of Kumar's Remote User Authentication Scheme with Smart Card Off-Topic Text Detection Based on Neural Networks Combined with Text Features Research of X Ray Image Recognition Based on Neural Network CFO Algorithm Using Niche and Opposition-Based Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1