A Robust Control Concept for Robotic Ankle Gait Assistance

K. Hollander, T. Sugar
{"title":"A Robust Control Concept for Robotic Ankle Gait Assistance","authors":"K. Hollander, T. Sugar","doi":"10.1109/ICORR.2007.4428416","DOIUrl":null,"url":null,"abstract":"Previously we have developed lightweight and efficient, spring based actuators. The Robotic Tendon actuator is one such device. Testing of the earlier devices have shown good results both theoretically and experimentally in their implementation to human gait assistance. The current development is focused on a robust control methodology to support the Robotic Tendon device. This study has concluded that the stance phase of gait can be broken into five distinct zones in order to dictate controller behavior. Simulated control of these five zones have shown that simple velocity control and stiffness control meet the requirements necessary for robust gait assistance.","PeriodicalId":197465,"journal":{"name":"2007 IEEE 10th International Conference on Rehabilitation Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 10th International Conference on Rehabilitation Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2007.4428416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Previously we have developed lightweight and efficient, spring based actuators. The Robotic Tendon actuator is one such device. Testing of the earlier devices have shown good results both theoretically and experimentally in their implementation to human gait assistance. The current development is focused on a robust control methodology to support the Robotic Tendon device. This study has concluded that the stance phase of gait can be broken into five distinct zones in order to dictate controller behavior. Simulated control of these five zones have shown that simple velocity control and stiffness control meet the requirements necessary for robust gait assistance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人踝关节步态辅助的鲁棒控制概念
以前,我们已经开发了轻量级和高效的,基于弹簧的执行器。机器人肌腱执行器就是这样一种装置。对早期装置的测试表明,在理论上和实验上,它们对人类步态辅助的实现都取得了良好的效果。目前的发展重点是一种鲁棒控制方法来支持机器人肌腱装置。这项研究已经得出结论,步态的立场阶段可以分为五个不同的区域,以指示控制器的行为。这五个区域的仿真控制表明,简单的速度控制和刚度控制可以满足鲁棒步态辅助的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the effect on walking of balance-related degrees of freedom in a robotic gait training device Biomimetic Tactile Sensor for Control of Grip Haptic Device System for Upper Limb Motor and Cognitive Function Rehabilitation: Grip Movement Comparison between Normal Subjects and Stroke Patients Exoskeleton design for functional rehabilitation in patients with neurological disorders and stroke Characterization of a New Type of Dry Electrodes for Long-Term Recordings of Surface-Electromyogram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1