Fast Near-Duplicate Video Retrieval via Motion Time Series Matching

John R. Zhang, J. Ren, Fangzhe Chang, Thomas L. Wood, J. Kender
{"title":"Fast Near-Duplicate Video Retrieval via Motion Time Series Matching","authors":"John R. Zhang, J. Ren, Fangzhe Chang, Thomas L. Wood, J. Kender","doi":"10.1109/ICME.2012.111","DOIUrl":null,"url":null,"abstract":"This paper introduces a method for the efficient comparison and retrieval of near duplicates of a query video from a video database. The method generates video signatures from histograms of orientations of optical flow of feature points computed from uniformly sampled video frames concatenated over time to produce time series, which are then aligned and matched. Major incline matching, a data reduction and peak alignment method for time series, is adapted for faster performance. The resultant method is compact and robust against a number of common transformations including: flipping, cropping, picture-in-picture, photometric, addition of noise and other artifacts. We evaluate on the MUSCLE VCD 2007 dataset and a dataset derived from TRECVID 2009. Good precision (average 88.8%) at significantly higher speeds (average durations: 45 seconds for signature generation plus 92 seconds for a linear search of 81-second query video in a 300 hour dataset) than results reported in the literature are shown.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper introduces a method for the efficient comparison and retrieval of near duplicates of a query video from a video database. The method generates video signatures from histograms of orientations of optical flow of feature points computed from uniformly sampled video frames concatenated over time to produce time series, which are then aligned and matched. Major incline matching, a data reduction and peak alignment method for time series, is adapted for faster performance. The resultant method is compact and robust against a number of common transformations including: flipping, cropping, picture-in-picture, photometric, addition of noise and other artifacts. We evaluate on the MUSCLE VCD 2007 dataset and a dataset derived from TRECVID 2009. Good precision (average 88.8%) at significantly higher speeds (average durations: 45 seconds for signature generation plus 92 seconds for a linear search of 81-second query video in a 300 hour dataset) than results reported in the literature are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于运动时间序列匹配的快速近重复视频检索
本文介绍了一种从视频数据库中对查询视频的近重复点进行高效比较和检索的方法。该方法从均匀采样的视频帧中计算出的特征点的光流方向直方图中生成视频签名,这些特征点随时间串联产生时间序列,然后对其进行对齐和匹配。主要倾斜匹配,数据减少和峰值对齐方法的时间序列,适应更快的性能。所得到的方法是紧凑和鲁棒的一些常见的变换,包括:翻转,裁剪,画中画,光度,添加噪声和其他人工制品。我们对MUSCLE VCD 2007数据集和来自TRECVID 2009的数据集进行了评估。与文献中报道的结果相比,本文显示了高得多的速度下的良好精度(平均88.8%)(签名生成的平均持续时间:45秒,对300小时数据集中81秒的查询视频进行线性搜索的平均持续时间为92秒)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
View Independent Computer Lip-Reading EEG-based Dominance Level Recognition for Emotion-Enabled Interaction Area and Memory Efficient Architectures for 3D Blu-ray-compliant Multimedia Processors Effective Spatial Data Broadcasting Video Copy Detection Using a Soft Cascade of Multimodal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1