Biodiversity Characterisation of Fouling Communities and Their Hydrodynamic Consequences on Marine Renewable Energy Infrastructure in the UK

A. Want, R. Harris, J. Porter
{"title":"Biodiversity Characterisation of Fouling Communities and Their Hydrodynamic Consequences on Marine Renewable Energy Infrastructure in the UK","authors":"A. Want, R. Harris, J. Porter","doi":"10.1109/OCEANSKOBE.2018.8559237","DOIUrl":null,"url":null,"abstract":"Generating electricity from marine energy is a globally important industry and forms a vital part of several nations' objectives to decarbonise energy production. In the UK, the resource-rich waters around Scotland have led to world-leading developments of facilities and supporting infrastructure used in deploying and testing wave and tidal energy technologies. A major concern to industries working in the marine environment is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, marine energy devices, infrastructure, and instrumentation were surveyed to characterise biofouling organisms. Fouling communities varied between deployment habitats; key organisms were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive species. A method to measure biofouling impact on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Scotland. Results are discussed in relation to measurement accuracy of resources for power generation. Further applications are suggested for future testing in other scenarios including habitats use for extracting tidal energy.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generating electricity from marine energy is a globally important industry and forms a vital part of several nations' objectives to decarbonise energy production. In the UK, the resource-rich waters around Scotland have led to world-leading developments of facilities and supporting infrastructure used in deploying and testing wave and tidal energy technologies. A major concern to industries working in the marine environment is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, marine energy devices, infrastructure, and instrumentation were surveyed to characterise biofouling organisms. Fouling communities varied between deployment habitats; key organisms were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive species. A method to measure biofouling impact on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Scotland. Results are discussed in relation to measurement accuracy of resources for power generation. Further applications are suggested for future testing in other scenarios including habitats use for extracting tidal energy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
英国污染群落的生物多样性特征及其对海洋可再生能源基础设施的水动力影响
利用海洋能源发电是一个全球重要产业,也是几个国家实现能源生产脱碳目标的重要组成部分。在英国,苏格兰周围资源丰富的水域引领了世界领先的设施和配套基础设施的发展,用于部署和测试波浪和潮汐能技术。在海洋环境中工作的工业主要关注的是水下结构的生物污染,包括能量转换器和测量仪器。在这项研究中,研究人员调查了海洋能源设备、基础设施和仪器,以表征生物污染生物。不同部署生境的结垢群落存在差异;确定了关键生物,为安排设备维护和防止入侵物种的传播提供了建议。描述了一种测量生物污垢对水动力响应影响的方法,并将其应用于部署在苏格兰试验场的波浪监测浮标的数据。讨论了与发电资源测量精度的关系。进一步的应用建议在其他场景下进行测试,包括用于提取潮汐能的栖息地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an Energy Effective Autonomous USV for Undertaking Missions at the Highlands of Peru Automated Peak Detection in Doppler Spectra of HF Surface Wave Radar Evaluation of Environmental Data for Search and Rescue II Time Synchronization with Multiple-Access Data Transmission Protocol in Underwater Sensor Networks A Deployment Optimization Mechanism Using Depth Adjustable Nodes in Underwater Acoustic Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1