Scale-Space Random Walks

Richard Rzeszutek, Thomas F. El-Maraghi, D. Androutsos
{"title":"Scale-Space Random Walks","authors":"Richard Rzeszutek, Thomas F. El-Maraghi, D. Androutsos","doi":"10.1109/CCECE.2009.5090191","DOIUrl":null,"url":null,"abstract":"The Random Walks image segmentation algorithm provides a fast and effective method for supervised image segmentation. However, Random Walks does not work very well in the presence of noise or texture. Therefore, we propose an augmented version of Random Walks known as “Scale-Space Random Walks” (SSRW) that addresses these problems. Through a minor, though non-trivial, modification to the Random Walks algorithm, we show that the SSRW can produce more accurate segmentations in the presence of noise and texture then the original Random Walks can.","PeriodicalId":153464,"journal":{"name":"2009 Canadian Conference on Electrical and Computer Engineering","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2009.5090191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Random Walks image segmentation algorithm provides a fast and effective method for supervised image segmentation. However, Random Walks does not work very well in the presence of noise or texture. Therefore, we propose an augmented version of Random Walks known as “Scale-Space Random Walks” (SSRW) that addresses these problems. Through a minor, though non-trivial, modification to the Random Walks algorithm, we show that the SSRW can produce more accurate segmentations in the presence of noise and texture then the original Random Walks can.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尺度空间随机漫步
随机行走图像分割算法为监督图像分割提供了一种快速有效的方法。然而,随机漫步在存在噪声或纹理的情况下不能很好地工作。因此,我们提出了一种增强版本的随机漫步,称为“尺度空间随机漫步”(SSRW),以解决这些问题。通过对Random Walks算法的微小修改,我们表明,在存在噪声和纹理的情况下,SSRW可以比原始Random Walks产生更准确的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ATSC multipath channel characterization for fixed and mobile reception A compactmodular active vision system formulti-target surveillance A software simulator for Geomagnetically Induced Currents in electrical power systems A Virtual Node-based Shared Restoration scheme in multi-domain networks Microstrip patch antenna for RFID applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1