Optimized reference frame selection for video coding by cloud

Bin Li, Jizheng Xu, Houqiang Li, Feng Wu
{"title":"Optimized reference frame selection for video coding by cloud","authors":"Bin Li, Jizheng Xu, Houqiang Li, Feng Wu","doi":"10.1109/MMSP.2011.6093770","DOIUrl":null,"url":null,"abstract":"We investigate how to improve video coding efficiency via optimized reference frame selection using large-scale computation resources, e.g., a cloud. We first formulate the optimization problem for reference frame selection in video coding, which can be simplified to a manageable level. Given the maximum number of reference frames for encoding one frame, we give the upper bound of the coding efficiency on the High Efficiency Video Coding (HEVC) platform, which, although ideal, may require a huge amount of reference frame buffering at the decoder. Then we give a solution and the corresponding performance when the reference frame buffer size at the decoder is constrained. Experimental results show that when the number of reference frames is four, the proposed encoding scheme can achieve up to 16.9% bit-saving compared to HEVC, the state-of-the-art video coding system. The proposed encoding scheme is standard-compliant and can also be applied to H.264/AVC to improve coding efficiency.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We investigate how to improve video coding efficiency via optimized reference frame selection using large-scale computation resources, e.g., a cloud. We first formulate the optimization problem for reference frame selection in video coding, which can be simplified to a manageable level. Given the maximum number of reference frames for encoding one frame, we give the upper bound of the coding efficiency on the High Efficiency Video Coding (HEVC) platform, which, although ideal, may require a huge amount of reference frame buffering at the decoder. Then we give a solution and the corresponding performance when the reference frame buffer size at the decoder is constrained. Experimental results show that when the number of reference frames is four, the proposed encoding scheme can achieve up to 16.9% bit-saving compared to HEVC, the state-of-the-art video coding system. The proposed encoding scheme is standard-compliant and can also be applied to H.264/AVC to improve coding efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化了云视频编码的参考帧选择
我们研究了如何通过使用大规模计算资源(例如云)优化参考帧选择来提高视频编码效率。我们首先提出了视频编码中参考帧选择的优化问题,该问题可以简化到易于管理的程度。给定编码一帧的最大参考帧数,给出了高效视频编码(HEVC)平台上编码效率的上限,尽管HEVC平台很理想,但在解码器上可能需要大量的参考帧缓冲。然后给出了解码器参考帧缓冲区大小受限时的解决方案和相应的性能。实验结果表明,在参考帧数为4帧的情况下,与当前最先进的视频编码系统HEVC相比,所提出的编码方案最多可节省16.9%的比特。该编码方案符合标准,也可应用于H.264/AVC,提高编码效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Separation of speech sources using an Acoustic Vector Sensor Strategies for orca call retrieval to support collaborative annotation of a large archive Recognizing actions using salient features Region of interest determination using human computation Image super-resolution via feature-based affine transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1