K-covered wireless sensor network optimization

Jie Li, T. Chai, Lisheng Fan, Li Pan, Jingkuan Gong
{"title":"K-covered wireless sensor network optimization","authors":"Jie Li, T. Chai, Lisheng Fan, Li Pan, Jingkuan Gong","doi":"10.1109/ISSCAA.2010.5634044","DOIUrl":null,"url":null,"abstract":"In this paper, a k-covered wireless sensor network optimization problem is considered to improve the quality of surveillance. In order to maximize the coverage area of wireless sensor network with k-covered hotspots and connected sensor nodes, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to obtain an optimal sensor placement. Simulation results indicate that the proposed algorithm is effective and efficient. Finally, it is demonstrated that the proposed algorithm exhibits a significant performance improvement over other benchmark methods, for example, genetic algorithm (GA) and particle swarm optimization (PSO) method.","PeriodicalId":324652,"journal":{"name":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2010.5634044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a k-covered wireless sensor network optimization problem is considered to improve the quality of surveillance. In order to maximize the coverage area of wireless sensor network with k-covered hotspots and connected sensor nodes, a novel stochastic optimization technique named particle filter optimization (PFO) is proposed to obtain an optimal sensor placement. Simulation results indicate that the proposed algorithm is effective and efficient. Finally, it is demonstrated that the proposed algorithm exhibits a significant performance improvement over other benchmark methods, for example, genetic algorithm (GA) and particle swarm optimization (PSO) method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k覆盖无线传感器网络优化
为了提高监控质量,本文研究了一个覆盖k的无线传感器网络优化问题。为了使无线传感器网络中热点覆盖k个且传感器节点连通的覆盖面积最大化,提出了一种新的随机优化技术——粒子滤波优化(PFO),以获得传感器的最优布局。仿真结果表明,该算法是有效的。结果表明,该算法与遗传算法(GA)和粒子群优化(PSO)等基准算法相比,具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The application of signal analysis in the nuclear power system under ocean conditions The application of wavelet filtering on denoising hemispherical resonator gyro signal Research on signal de-noising technique for MEMS gyro The correction of spaceborne satellite's yaw steering law based on the star tracker high-precision measurement Application of magneto-rheological (MR) damper in landing gear shimmy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1