Multiport Interleaved Resonant DC-DC Converter for Off-Board Electric Vehicle Charging Application

Nishant Kumar, Mayank Kumar
{"title":"Multiport Interleaved Resonant DC-DC Converter for Off-Board Electric Vehicle Charging Application","authors":"Nishant Kumar, Mayank Kumar","doi":"10.1109/PEDES56012.2022.10079998","DOIUrl":null,"url":null,"abstract":"The electric vehicles (EVs) are occupying the transportation sector at pace and it is expected to surpass the fuel-based vehicle in the upcoming decade. One of the major hurdles for EV is the requirement for multiple fast charging stations to meet the demand of charging of the EV. Thus arises the requirement for fast chargers that could satisfy the demand for better mileage and shorter span of charging. The proposed article is on multiport output series resonant interleaved DC-DC converter with unidirectional power flow capability of different ports with particular voltage level. Having a multiport structure reduces the requirements of components resulting the cost and volume of the system decreases in comparison with the same number of individual chargers. A control method using pulse width modulation and frequency modulation is obtained to control the output voltage and power for the three port converters. The interleaved output of the three ports helps to obtain low ripple peak current for high frequency (HF) transformer secondary side and high charging current obtained. A 3.3kW three-port output interleaved DC-DC converter has been designed and simulated in MATLAB simulation software for variable input voltage and ZVS soft-switching is achieved for wide range of input voltage.","PeriodicalId":161541,"journal":{"name":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES56012.2022.10079998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electric vehicles (EVs) are occupying the transportation sector at pace and it is expected to surpass the fuel-based vehicle in the upcoming decade. One of the major hurdles for EV is the requirement for multiple fast charging stations to meet the demand of charging of the EV. Thus arises the requirement for fast chargers that could satisfy the demand for better mileage and shorter span of charging. The proposed article is on multiport output series resonant interleaved DC-DC converter with unidirectional power flow capability of different ports with particular voltage level. Having a multiport structure reduces the requirements of components resulting the cost and volume of the system decreases in comparison with the same number of individual chargers. A control method using pulse width modulation and frequency modulation is obtained to control the output voltage and power for the three port converters. The interleaved output of the three ports helps to obtain low ripple peak current for high frequency (HF) transformer secondary side and high charging current obtained. A 3.3kW three-port output interleaved DC-DC converter has been designed and simulated in MATLAB simulation software for variable input voltage and ZVS soft-switching is achieved for wide range of input voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于车载充电的多端口交错谐振DC-DC变换器
电动汽车(ev)正在迅速占领交通运输领域,预计在未来十年内将超过燃油汽车。电动汽车的主要障碍之一是需要多个快速充电站来满足电动汽车的充电需求。因此,对快速充电器的需求就产生了,它可以满足更好的里程和更短的充电时间的需求。本文研究的是具有特定电压水平下不同端口单向潮流能力的多端口输出串联谐振交错DC-DC变换器。与相同数量的单个充电器相比,具有多端口结构减少了对组件的要求,从而降低了系统的成本和体积。提出了一种采用脉宽调制和调频调制的控制方法来控制三端口变换器的输出电压和功率。三个端口的交错输出有助于高频变压器二次侧获得低纹波峰值电流,并获得高充电电流。设计了一种3.3kW三端口输出交错DC-DC变换器,并在MATLAB仿真软件中对其进行了仿真,实现了宽输入电压范围下的ZVS软开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analytical Series-PID controller design with Smith Predictor approach for analyzing and mitigating the Time Delay Cyber Attack (TDCA) A Novel Fault Detection Index in Smart Distribution System consisting Multi-Microgrids Combined SoC and SoE Estimation of Lithium-ion Battery using Multi-layer Feedforward Neural Network Fault Tolerance of the Neutral Point Clamped based Inverter Driven Nine Phase Induction Machine under Switch Fault Condition Sliding-Mode High-Gain Observer based Position Control for an Electro-Hydraulic Actuator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1