{"title":"Evolving temporal fuzzy itemsets from quantitative data with a multi-objective evolutionary algorithm","authors":"Stephen G. Matthews, M. Gongora, A. Hopgood","doi":"10.1109/GEFS.2011.5949497","DOIUrl":null,"url":null,"abstract":"We present a novel method for mining itemsets that are both quantitative and temporal, for association rule mining, using multi-objective evolutionary search and optimisation. This method successfully identifies temporal itemsets that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. Current approaches preprocess data which can often lead to a loss of information. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy itemsets and the approach of using a multi-objective evolutionary algorithm. This preliminary work presents the problem, a novel approach and promising results that will lead to future work. Results show the ability of NSGA-II to evolve target itemsets that have been augmented into synthetic datasets. Itemsets with different levels of support have been augmented to demonstrate this approach with varying difficulties.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"3 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
We present a novel method for mining itemsets that are both quantitative and temporal, for association rule mining, using multi-objective evolutionary search and optimisation. This method successfully identifies temporal itemsets that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. Current approaches preprocess data which can often lead to a loss of information. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy itemsets and the approach of using a multi-objective evolutionary algorithm. This preliminary work presents the problem, a novel approach and promising results that will lead to future work. Results show the ability of NSGA-II to evolve target itemsets that have been augmented into synthetic datasets. Itemsets with different levels of support have been augmented to demonstrate this approach with varying difficulties.