{"title":"Combined Aerodynamic and Phased Array Microphone Studies on Basic Models of Low-Speed Axial Fan Blade Sections","authors":"E. Balla, J. Vad","doi":"10.1115/GT2018-75778","DOIUrl":null,"url":null,"abstract":"The paper presents comparative aerodynamic and aeroacoustic studies on basic models of blade sections of low-speed, low-Reynolds-number axial fans. The wind tunnel experiments incorporated representative cambered plate and airfoil blade profiles. The aerodynamic measurements revealed that, for low Reynolds numbers, cambered plate blade sections may perform aerodynamically better than airfoil sections. A phased array microphone system, combined with a dipole beamforming and spatial filtering technique, offered a potential for localizing the noise sources in both streamwise and transversal direction. The acoustic studies focused on the profile vortex shedding noise. The results were qualitatively evaluated and compared with the semi-empirical noise prediction model developed by Brooks, Pope, and Marcolini. The measurements are considered as preparation of a dataset contributing to the background for designing high-efficiency, low-noise axial fans operating at low Reynolds number.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The paper presents comparative aerodynamic and aeroacoustic studies on basic models of blade sections of low-speed, low-Reynolds-number axial fans. The wind tunnel experiments incorporated representative cambered plate and airfoil blade profiles. The aerodynamic measurements revealed that, for low Reynolds numbers, cambered plate blade sections may perform aerodynamically better than airfoil sections. A phased array microphone system, combined with a dipole beamforming and spatial filtering technique, offered a potential for localizing the noise sources in both streamwise and transversal direction. The acoustic studies focused on the profile vortex shedding noise. The results were qualitatively evaluated and compared with the semi-empirical noise prediction model developed by Brooks, Pope, and Marcolini. The measurements are considered as preparation of a dataset contributing to the background for designing high-efficiency, low-noise axial fans operating at low Reynolds number.