{"title":"Improved Interpretation of Single-Well-Chemical-Tracer for Low Salinity and Polymer Flooding","authors":"A. K. N. Korrani, G. Jerauld, A. Al-Qattan","doi":"10.2118/198022-ms","DOIUrl":null,"url":null,"abstract":"\n We interpreted a series of single-well-chemical-tracer-tests (SWCTTs) estimating residual oil (SORW) to base high salinity waterflood, low salinity waterflood and subsequent polymer flood conducted on a Greater Burgan well. Interpretation of the tests requires history matching of the back-production of partitioning and non-partitioning tracers which is impacted by differing amounts of irreversible flow and differing amounts of dispersion as well as the amount of residual oil.\n We applied the state-of-the-art chemical reservoir simulator (UTCHEM) and an assisted history matching tool (BP’s Top-Down-Reservoir-Modeling) to interpret the tests and accurately quantify uncertainty in residual oil saturations post high salinity, low salinity, and polymer floods. Two optimization algorithms (i.e., Genetic algorithm (GA) and Particle-Swarm-Optimization (PSO)-Mesh-Adaptive-Direct-Search (MADS) algorithms) were applied to better address the uncertainty.\n Our results show a six saturation unit decrease in SORW post low salinity with no change to the SORW post polymer. This is in-line with our expectations - we expect no change in SORW post-polymer as the conventional HPAM, which does not exhibit visco-elastic behavior, was used in the test. We demonstrate that history matching the back-produced tracer profiles is a robust approach to estimate the SORW by showing that three-or four-layer simulation model assumption does not change the SORW estimated. We accounted for the uncertainty in partition-coefficient in our uncertainty estimates.\n We present several innovations that improve history matching back-produced tracer profiles; hence, better SORW estimations (e.g., different level of dispersivity for individual simulation layers to account for different heterogeneity level as opposed to assuming a single dispersion for all layers). We generate more robust estimates of uncertainty by finding a range of alternative history matches all of which are consistent with the measured data.","PeriodicalId":282370,"journal":{"name":"Day 2 Mon, October 14, 2019","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, October 14, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/198022-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We interpreted a series of single-well-chemical-tracer-tests (SWCTTs) estimating residual oil (SORW) to base high salinity waterflood, low salinity waterflood and subsequent polymer flood conducted on a Greater Burgan well. Interpretation of the tests requires history matching of the back-production of partitioning and non-partitioning tracers which is impacted by differing amounts of irreversible flow and differing amounts of dispersion as well as the amount of residual oil.
We applied the state-of-the-art chemical reservoir simulator (UTCHEM) and an assisted history matching tool (BP’s Top-Down-Reservoir-Modeling) to interpret the tests and accurately quantify uncertainty in residual oil saturations post high salinity, low salinity, and polymer floods. Two optimization algorithms (i.e., Genetic algorithm (GA) and Particle-Swarm-Optimization (PSO)-Mesh-Adaptive-Direct-Search (MADS) algorithms) were applied to better address the uncertainty.
Our results show a six saturation unit decrease in SORW post low salinity with no change to the SORW post polymer. This is in-line with our expectations - we expect no change in SORW post-polymer as the conventional HPAM, which does not exhibit visco-elastic behavior, was used in the test. We demonstrate that history matching the back-produced tracer profiles is a robust approach to estimate the SORW by showing that three-or four-layer simulation model assumption does not change the SORW estimated. We accounted for the uncertainty in partition-coefficient in our uncertainty estimates.
We present several innovations that improve history matching back-produced tracer profiles; hence, better SORW estimations (e.g., different level of dispersivity for individual simulation layers to account for different heterogeneity level as opposed to assuming a single dispersion for all layers). We generate more robust estimates of uncertainty by finding a range of alternative history matches all of which are consistent with the measured data.