{"title":"ILP-based optimization of sequential circuits for low power","authors":"Feng Gao, J. Hayes","doi":"10.1145/871506.871542","DOIUrl":null,"url":null,"abstract":"The power consumption of a sequential circuit can be reduced by decomposing it into subcircuits which can be turned off when inactive. Power can also be reduced by careful state encoding. Modeling a given circuit as a finite-state machine, we formulate its decomposition into submachines as an integer linear programming (ILP) problem, and automatically generate the ILP model with power minimization as the objective. A simple, but powerful state encoding method is used for the submachines to further reduce power consumption. We present experimental results which show that circuits designed by our approach consume 30% to 90% less power than conventional circuits.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/871506.871542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
The power consumption of a sequential circuit can be reduced by decomposing it into subcircuits which can be turned off when inactive. Power can also be reduced by careful state encoding. Modeling a given circuit as a finite-state machine, we formulate its decomposition into submachines as an integer linear programming (ILP) problem, and automatically generate the ILP model with power minimization as the objective. A simple, but powerful state encoding method is used for the submachines to further reduce power consumption. We present experimental results which show that circuits designed by our approach consume 30% to 90% less power than conventional circuits.