Cryo-Electron Microscopy Image Denoising Using Multi-Frequency Vector Diffusion Maps

Yifeng Fan, Zhizhen Zhao
{"title":"Cryo-Electron Microscopy Image Denoising Using Multi-Frequency Vector Diffusion Maps","authors":"Yifeng Fan, Zhizhen Zhao","doi":"10.1109/ICIP42928.2021.9506435","DOIUrl":null,"url":null,"abstract":"Cryo-electron microscopy (EM) single particle reconstruction is a general technique for 3D structure determination of macromolecules. However, because the images are taken at low electron dose, it is extremely hard to visualize the individual particle with low contrast and high noise level. In this paper, we propose a novel framework for cryo-EM single particle image denoising, which incorporates the recently developed multi-frequency vector diffusion maps [1] for improving the identification and alignment of images with similar viewing directions. In addition, we propose a novel filtering scheme combining graph signal processing and truncated Fourier-Bessel expansion of the projection images. Through both simulated and publicly available real data, we demonstrate that our proposed method is efficient and robust to noise compared with the state-of-the-art cryo-EM 2D class averaging algorithms.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cryo-electron microscopy (EM) single particle reconstruction is a general technique for 3D structure determination of macromolecules. However, because the images are taken at low electron dose, it is extremely hard to visualize the individual particle with low contrast and high noise level. In this paper, we propose a novel framework for cryo-EM single particle image denoising, which incorporates the recently developed multi-frequency vector diffusion maps [1] for improving the identification and alignment of images with similar viewing directions. In addition, we propose a novel filtering scheme combining graph signal processing and truncated Fourier-Bessel expansion of the projection images. Through both simulated and publicly available real data, we demonstrate that our proposed method is efficient and robust to noise compared with the state-of-the-art cryo-EM 2D class averaging algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低温电子显微镜图像的多频矢量扩散图去噪
低温电子显微镜(EM)单粒子重建是测定大分子三维结构的一种通用技术。然而,由于图像是在低电子剂量下拍摄的,因此在低对比度和高噪声水平下,很难将单个粒子可视化。在本文中,我们提出了一种新的冷冻电镜单粒子图像去噪框架,该框架结合了最近发展的多频矢量扩散图[1],以改善具有相似观看方向的图像的识别和对准。此外,我们提出了一种结合图信号处理和投影图像截断傅立叶-贝塞尔展开式的滤波方案。通过模拟和公开的真实数据,我们证明了与最先进的cryo-EM 2D类平均算法相比,我们提出的方法是有效的,对噪声具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1