A conceptual framework for implementing neural networks on massively parallel machines

Magali E. Azema-Barac
{"title":"A conceptual framework for implementing neural networks on massively parallel machines","authors":"Magali E. Azema-Barac","doi":"10.1109/IPPS.1992.222973","DOIUrl":null,"url":null,"abstract":"This paper describes a framework for implementing neural networks on massively parallel machines. The framework is generic and applies to a range of neural networks (Multi Layer Perceptron, Competitive Learning, Self-Organising Map, etc.) as well as a range of massively parallel machines (Connection Machine, Distributed Array Processor, MasPar). It consists of two phases: an abstract decomposition of neural networks and a machine specific decomposition. The abstract decomposition identifies the parallelism implemented by neural networks, and provides alternative distribution schemes according to the required exploitation of parallelism. The machine specific decomposition considers the relevant machine criteria, and integrates these with the result of the abstract decomposition to form a 'decision' system. This system formalises the relative gain of each distribution scheme according to neural network and machine criteria. It then identifies their possible optimisations. Finally, it computes and ranks the absolute speed up of each distribution scheme.<<ETX>>","PeriodicalId":340070,"journal":{"name":"Proceedings Sixth International Parallel Processing Symposium","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1992.222973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper describes a framework for implementing neural networks on massively parallel machines. The framework is generic and applies to a range of neural networks (Multi Layer Perceptron, Competitive Learning, Self-Organising Map, etc.) as well as a range of massively parallel machines (Connection Machine, Distributed Array Processor, MasPar). It consists of two phases: an abstract decomposition of neural networks and a machine specific decomposition. The abstract decomposition identifies the parallelism implemented by neural networks, and provides alternative distribution schemes according to the required exploitation of parallelism. The machine specific decomposition considers the relevant machine criteria, and integrates these with the result of the abstract decomposition to form a 'decision' system. This system formalises the relative gain of each distribution scheme according to neural network and machine criteria. It then identifies their possible optimisations. Finally, it computes and ranks the absolute speed up of each distribution scheme.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在大规模并行机器上实现神经网络的概念框架
本文描述了一个在大规模并行机器上实现神经网络的框架。该框架是通用的,适用于一系列神经网络(多层感知器,竞争学习,自组织地图等)以及一系列大规模并行机器(连接机,分布式阵列处理器,MasPar)。它包括两个阶段:神经网络的抽象分解和机器特定的分解。抽象分解识别神经网络实现的并行性,并根据并行性开发的需要提供可选的分配方案。特定于机器的分解考虑了相关的机器标准,并将这些标准与抽象分解的结果集成在一起,形成一个“决策”系统。该系统根据神经网络和机器准则对各分配方案的相对增益进行形式化。然后识别它们可能的优化。最后,对各分配方案的绝对速度进行了计算和排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel heap: improved and simplified Assignment of ADT modules to processors Formal derivation of an efficient parallel 2-D Gauss-Seidel method Analyzing performance of sequencing mechanisms for simple layered task systems An optimal parallel algorithm for arithmetic expression parsing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1