Synchrophasor-based data mining for power system fault analysis

Miftah Al Karim, M. Chenine, Kun Zhu, L. Nordström
{"title":"Synchrophasor-based data mining for power system fault analysis","authors":"Miftah Al Karim, M. Chenine, Kun Zhu, L. Nordström","doi":"10.1109/ISGTEurope.2012.6465843","DOIUrl":null,"url":null,"abstract":"Phasor measurement units can provide high resolution and synchronized power system data, which can be effectively utilized for the implementation of data mining techniques. Data mining, based on pattern recognition algorithms can be of significant help for power system analysis, as high definition data is often complex to comprehend. In this paper three pattern recognition algorithms are applied to perform the data mining tasks. The deployment is carried out firstly for fault data classification, secondly for checking which faults are occurring more frequently and thirdly for identifying the root cause of a fault by clustering the parameters behind each scenario. For such purposes three algorithms are chosen, k-Nearest Neighbor, Naïve Bayes and the k-means Clustering.","PeriodicalId":244881,"journal":{"name":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2012.6465843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Phasor measurement units can provide high resolution and synchronized power system data, which can be effectively utilized for the implementation of data mining techniques. Data mining, based on pattern recognition algorithms can be of significant help for power system analysis, as high definition data is often complex to comprehend. In this paper three pattern recognition algorithms are applied to perform the data mining tasks. The deployment is carried out firstly for fault data classification, secondly for checking which faults are occurring more frequently and thirdly for identifying the root cause of a fault by clustering the parameters behind each scenario. For such purposes three algorithms are chosen, k-Nearest Neighbor, Naïve Bayes and the k-means Clustering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于同步相量的电力系统故障分析数据挖掘
相量测量单元可以提供高分辨率和同步的电力系统数据,可以有效地用于数据挖掘技术的实施。基于模式识别算法的数据挖掘可以为电力系统分析提供重要帮助,因为高清晰度数据通常难以理解。本文采用三种模式识别算法来完成数据挖掘任务。该部署首先用于故障数据分类,其次用于检查哪些故障发生的频率更高,第三是通过对每个场景背后的参数进行聚类来识别故障的根本原因。为此,选择了三种算法,k-最近邻,Naïve贝叶斯和k-均值聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A local energy management system for solar integration and improved security of supply: The Nice Grid project Centralized voltage control method using plural D-STATCOM with controllable dead band in distribution system with renewable energy A national project on Optimal Control and demonstration of the Japanese smart grid for massive integration of photovoltaic systems Controlling smart grid adaptivity Integration of heat pumps in distribution grids: Economic motivation for grid control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1