Transfer learning for human activity classification in multiple radar setups

Jérémy Fix, Israel David Hinostroza Sáenz, Chengfang Ren, G. Manfredi, T. Letertre
{"title":"Transfer learning for human activity classification in multiple radar setups","authors":"Jérémy Fix, Israel David Hinostroza Sáenz, Chengfang Ren, G. Manfredi, T. Letertre","doi":"10.23919/eusipco55093.2022.9909851","DOIUrl":null,"url":null,"abstract":"Deep Learning techniques require vast amount of data for a proper training. In human activity classification using radar signals, the data acquisition can be very expensive and takes a lot of time, but radar databases are starting to be available to the public. In this work we show that we can use these available radar databases to pretrain a neural network that will finish its training on the final radar data even though the radar configuration is different (geometry configuration and carrier frequency).","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep Learning techniques require vast amount of data for a proper training. In human activity classification using radar signals, the data acquisition can be very expensive and takes a lot of time, but radar databases are starting to be available to the public. In this work we show that we can use these available radar databases to pretrain a neural network that will finish its training on the final radar data even though the radar configuration is different (geometry configuration and carrier frequency).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多雷达环境下人类活动分类的迁移学习
深度学习技术需要大量的数据来进行适当的训练。在利用雷达信号进行人类活动分类的过程中,数据采集成本高,耗时长,但雷达数据库已开始向公众开放。在这项工作中,我们表明,我们可以使用这些可用的雷达数据库来预训练神经网络,即使雷达配置不同(几何配置和载波频率),该神经网络也将在最终雷达数据上完成训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1