Actor-Critic Algorithm for Optimal Synchronization of Kuramoto Oscillator

D. Vrushabh, S. K, K. Sonam
{"title":"Actor-Critic Algorithm for Optimal Synchronization of Kuramoto Oscillator","authors":"D. Vrushabh, S. K, K. Sonam","doi":"10.1109/CoDIT49905.2020.9263785","DOIUrl":null,"url":null,"abstract":"This paper constructs a reinforcement learning (RL) based algorithm of Actor-Critic (AC) for the optimal synchronism of the Kuramoto oscillator. This is accomplished through the Ott-Antonsen ansatz framework for the dynamics of large interactive unit networks. Besides, this approach reduces the infinite-dimensional dynamics to phase space flow, i.e., low dimensional dynamics for certain systems of globally coupled phase oscillators. The resulting Hamiltonian-Jacobi-Bellman (HJB) expression is extremely difficult to solve in general, therefore this paper introduces the AC method for learning approximate optimal control laws for the Kuramoto oscillator model. RL has been contemplated as one of the efficient methods to solve optimal control of non-linear systems. For a collection of non-homogeneous oscillators, the states are elucidated as phase angles, which is the modification of the model for a coupled Kuramoto oscillator. An admissible initial control policy for the Kuramoto oscillator model is designed and solved using RL giving an approximate solution of the optimal control problem. Finally, local synchronism of the coupled Kuramoto oscillator model is supported through simulations analysis.","PeriodicalId":355781,"journal":{"name":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"30 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT49905.2020.9263785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper constructs a reinforcement learning (RL) based algorithm of Actor-Critic (AC) for the optimal synchronism of the Kuramoto oscillator. This is accomplished through the Ott-Antonsen ansatz framework for the dynamics of large interactive unit networks. Besides, this approach reduces the infinite-dimensional dynamics to phase space flow, i.e., low dimensional dynamics for certain systems of globally coupled phase oscillators. The resulting Hamiltonian-Jacobi-Bellman (HJB) expression is extremely difficult to solve in general, therefore this paper introduces the AC method for learning approximate optimal control laws for the Kuramoto oscillator model. RL has been contemplated as one of the efficient methods to solve optimal control of non-linear systems. For a collection of non-homogeneous oscillators, the states are elucidated as phase angles, which is the modification of the model for a coupled Kuramoto oscillator. An admissible initial control policy for the Kuramoto oscillator model is designed and solved using RL giving an approximate solution of the optimal control problem. Finally, local synchronism of the coupled Kuramoto oscillator model is supported through simulations analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kuramoto振荡器最优同步的actor - critical算法
本文构造了一种基于强化学习(RL)的Actor-Critic (AC)算法来实现Kuramoto振荡器的最优同步。这是通过Ott-Antonsen ansatz框架实现的,该框架用于大型交互单元网络的动态。此外,该方法将无限维动力学简化为相空间流,即某些全局耦合相振子系统的低维动力学。由此得到的Hamiltonian-Jacobi-Bellman (HJB)表达式一般是极难求解的,因此本文介绍了学习Kuramoto振子模型近似最优控制律的AC方法。强化学习被认为是解决非线性系统最优控制的有效方法之一。对于一组非齐次振子,将其状态表示为相角,这是对耦合Kuramoto振子模型的修正。设计了Kuramoto振子模型的可容许初始控制策略,并用RL方法求解,给出了最优控制问题的近似解。最后,通过仿真分析,验证了耦合Kuramoto振子模型的局域同步性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory tracking controller for nonlinear systems with disturbances using iterative learning algorithm without resetting condition Influence of a water flow variation on the efficiency of a hybrid PV/T water panel Demand-Oriented Rescheduling of Railway Traffic in Case of Delays Synergetic Synthesis of Adaptive Control of an Electro-pneumatic System Tourist Behaviour Analysis Based on Digital Pattern of Life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1