Top Reported Data Security Risks in the Age of COVID-19

Suzanna E. Schmeelk, Kutub Thakur, M. Ali, Denise M. Dragos, Abdullah Al-Hayajneh, Bryan Rendra Pramana
{"title":"Top Reported Data Security Risks in the Age of COVID-19","authors":"Suzanna E. Schmeelk, Kutub Thakur, M. Ali, Denise M. Dragos, Abdullah Al-Hayajneh, Bryan Rendra Pramana","doi":"10.1109/UEMCON53757.2021.9666573","DOIUrl":null,"url":null,"abstract":"Data has been collected and stored for thousands of years. Securing data during the digital age has remained difficult. Research shows that in 2018 there was over 33 zettabytes of data, which is approximately an equivalent to 129 billion 256GB mobile devices of data. Risk management in recent years has made attempts at balancing data security risks with organizational business and budgetary requirements. This research examines high probability data security threats and mitigations. It then reports on the threats in connection with the top United States healthcare data breaches reported during the COVID outbreak to the Health and Human Services (HHS) between June 11, 2020 and June 11, 2021. The data analysis shows that there were nine breaches of over a million affected individuals reported to HHS affecting 15,936,679 individuals in total. Five-million individuals is approximately larger than the populations of Los Angeles, New York, and Chicago combined. We connect the common security risks with the reports of these incidents to gain insights into common network security concerns and inform future network architectures and risk mitigations.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON53757.2021.9666573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data has been collected and stored for thousands of years. Securing data during the digital age has remained difficult. Research shows that in 2018 there was over 33 zettabytes of data, which is approximately an equivalent to 129 billion 256GB mobile devices of data. Risk management in recent years has made attempts at balancing data security risks with organizational business and budgetary requirements. This research examines high probability data security threats and mitigations. It then reports on the threats in connection with the top United States healthcare data breaches reported during the COVID outbreak to the Health and Human Services (HHS) between June 11, 2020 and June 11, 2021. The data analysis shows that there were nine breaches of over a million affected individuals reported to HHS affecting 15,936,679 individuals in total. Five-million individuals is approximately larger than the populations of Los Angeles, New York, and Chicago combined. We connect the common security risks with the reports of these incidents to gain insights into common network security concerns and inform future network architectures and risk mitigations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2019冠状病毒病时代报告的主要数据安全风险
数据已经被收集和储存了数千年。在数字时代保护数据仍然很困难。研究表明,2018年有超过33 zb的数据,大约相当于1290亿256GB的移动设备数据。近年来,风险管理试图平衡数据安全风险与组织业务和预算需求。本研究考察了高概率数据安全威胁和缓解措施。然后,它将在2020年6月11日至2021年6月11日期间向卫生与人类服务部(HHS)报告与COVID爆发期间报告的美国顶级医疗保健数据泄露相关的威胁。数据分析显示,向卫生与公众服务部报告的数据泄露事件共有9起,涉及超过100万人,总共影响了15,936,679人。500万人大约比洛杉矶、纽约和芝加哥人口的总和还要多。我们将常见的安全风险与这些事件的报告联系起来,以深入了解常见的网络安全问题,并为未来的网络架构和风险缓解提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-Aware Task Migration Through Ant-Colony Optimization for Multiprocessors A Personalized Virtual Learning Environment Using Multiple Modeling Techniques Development of Security System for Ready Made Garments (RMG) Industry in Bangladesh Design of an IoT Based Gas Wastage Monitoring, Leakage Detecting and Alerting System Artificial intelligence (AI) to study self-discharge batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1